

 	
 Products

 LOG COLLECTOR

 NXLog Enterprise Edition

 Full feature multi-platform log collection

 NXLog Community Edition

 Open-source free log collector

 ADD-ONS FOR NXLOG ENTERPRISE EDITION

 NXLog Add-Ons

 Integration with various software

 AGENT MANAGER FOR NXLOG ENTERPRISE EDITION

 NXLog Manager

 Manage and monitor NXLog instances

 DATABASE FOR NXLOG ENTERPRISE EDITION

 Raijin Database Engine

 The schemaless SQL database for storing events

 more from nxlog

 Professional Services

 Compare NXLog EE and CE

 NXLog Solution Packs

	
 Downloads

 NXLog Enterprise Edition

 Full feature multi-platform log collection

 NXLog Manager

 Manage and monitor NXLog instances

 NXLog Community Edition

 Open-source free log collector

	
 Solutions

 Integrations

 With SIEM, Devices, SaaS...

 Specfic OS support

 AIX, Linux, FreeBSD

 SCADA/ICS

 Energy, Oil & Gas, Transport...

 Windows Event log

 Collect locally or remotely, ..

 DNS Logging

 Enterprise-grade DNS log...

 Log Collection Modes

 Agent-based, Agentless or Cloud

 Agent Management

 Agents management and monitoring

 FIM

 File Integrity Monitoring

 macOS Logging

 ULS events, Apple System Logs ...

 By Industry

 Financial Services

 Government & Education

 Entertainment & Gambling

 Telecommunications

 Medical & Healthcare

 Military & Defense

 Law Firms & Legal Counsel

 Industrial & Manufacturing

	
 Partners

 Find a Reseller

 Look for our resellers worldwide

 Technology Ecosystem

 See all our partners and integrations

 Partner Program

 Join our community of partners

	
 Resources

 Documentation

 Products guides and integrations

 Blog

 Tutorials, updates and releases

 White papers

 Datasheets, infographics and more

 Videos

 Trainings and tutorial on specific topics

 Webinars

 Community events and webinars

									
 Case Studies

 Customer success stories

 Community Forum →

	
 Support

 GETTING STARTED GUIDE

 Set up accounts to raise support requests

 SUPPORT SERVICE DESK

 Access our support ticketing system

	
 Why Nxlog

 About Us

 Our journey, team and mission

 Customers

 Testimonials and case studies

 Careers

 We are hiring!

 Contact Us →

 Products

 LOG COLLECTOR

 NXLog Enterprise Edition

 Full feature multi-platform log collection

 NXLog Community Edition

 Open-source free log collector

 ADD-ONS FOR NXLOG ENTERPRISE EDITION

 NXLog Add-Ons

 Integration with various software

 AGENT MANAGER FOR NXLOG ENTERPRISE EDITION

 NXLog Manager

 Manage and monitor NXLog instances

 DATABASE FOR NXLOG ENTERPRISE EDITION

 Raijin Database Engine

 The schemaless SQL database for storing events

 more from nxlog

 Professional Services

 Compare NXLog EE and CE

 NXLog Solution Packs

 Downloads

 NXLog Enterprise Edition

 Full feature multi-platform log collection

 NXLog Manager

 Manage and monitor NXLog instances

 NXLog Community Edition

 Open-source free log collector

 Solutions

 Integrations

 With SIEM, Devices, SaaS...

 Specfic OS support

 AIX, Linux, FreeBSD

 SCADA/ICS

 Energy, Oil & Gas, Transport...

 Windows Event log

 Collect locally or remotely, ..

 DNS Logging

 Enterprise-grade DNS log...

 Log Collection Modes

 Agent-based, Agentless or Cloud

 Agent Management

 Agents management and monitoring

 FIM

 File Integrity Monitoring

 macOS Logging

 ULS events, Apple System Logs ...

 By Industry

 Financial Services

 Government & Education

 Entertainment & Gambling

 Telecommunications

 Medical & Healthcare

 Military & Defense

 Law Firms & Legal Counsel

 Industrial & Manufacturing

 Partners

 Find a Reseller

 Look for our resellers worldwide

 Technology Ecosystem

 See all our partners and integrations

 Partner Program

 Join our community of partners

 Resources

 Documentation

 Products guides and integrations

 Blog

 Tutorials, updates and releases

 White papers

 Datasheets, infographics and more

 Videos

 Trainings and tutorial on specific topics

 Webinars

 Community events and webinars

									
 Case Studies

 Customer success stories

 Community Forum →

 Why Nxlog

 About Us

 Our journey, team and mission

 Customers

 Testimonials and case studies

 Careers

 We are hiring!

 Contact Us →

 Request trial

 	

	

 Loading...

 Request Trial

	
	
	 	
			NXLog Docs

		

		
		

		

	

	

3.02

	
	

 NXLog User Guide
	

 Introduction
	
 About this Guide

	
 About NXLog

	
 Get started with NXLog

	

 System architecture
	
 Event records and fields

	
 Modules and routes

	
 Buffering and flow control

	
 Batch processing

	
 Log processing modes

	
 Available modules

	

 Deployment
	
 Supported platforms

	
 Product life cycle

	
 System requirements

	
 NXLog digital signature verification

	
 Red Hat Enterprise Linux

	
 Debian & Ubuntu

	
 SUSE Linux Enterprise Server

	
 FreeBSD

	
 OpenBSD

	
 Microsoft Windows

	
 Microsoft Nano Server

	
 Apple macOS

	
 Docker

	
 IBM AIX

	
 Oracle Solaris

	
 Hardening NXLog

	
 Relocating NXLog

	
 Monitoring and recovery

	
 Controlling resource usage

	
 Centralized deployment and management of NXLog agents

	

 Configuration
	
 Configuration overview

	
 NXLog language

	
 Reading and receiving logs

	

 Processing logs
	
 Parsing various log formats

	
 Alerting

	
 Using buffers

	
 Character set conversion

	
 Detecting an inactive agent or log source

	
 Event correlation

	
 Extracting data

	
 Filtering logs

	
 Format conversion

	
 Log rotation and retention

	
 Log classification

	
 Log prioritization

	
 Parsing multi-line logs

	
 Rate limiting and traffic shaping of logs

	
 Rewriting and modifying logs

	
 Log normalization

	
 Data masking

	
 Timestamps

	
 Forwarding and Storing Logs

	
 Centralized Log Collection

	
 NXLog failover mode

	
 High Availability (HA)

	
 Encrypted log transfer

	
 Reducing bandwidth and data size

	
 Reliable message delivery

	
 Compression and Encryption

	
 Optimizing the configuration

	

 OS Support
	
 IBM AIX

	
 FreeBSD

	
 OpenBSD

	
 GNU/Linux

	
 Apple macOS

	
 Oracle Solaris

	
 Microsoft Windows

	

 Integration
	
 ABB MicroSCADA Pro SYS600

	
 Amazon Web Services (AWS)

	
 Apache HTTP Server

	
 Apache NiFi

	
 Apache Tomcat

	
 APC Automatic Transfer Switch

	
 ArcSight Common Event Format (CEF)

	
 AVEVA System Platform

	
 Box

	
 Brocade switches

	
 Browser history logs

	
 Check Point

	
 Cisco ACS

	
 Cisco ASA

	
 Cisco FireSIGHT

	
 Cisco IPS

	
 Cloud Instance Metadata

	
 Common Event Expression (CEE)

	
 Content Management Systems

	
 Dell EqualLogic

	
 Dell iDRAC

	
 Dell PowerVault MD series

	
 Devo

	

 DHCP logs
	
 ISC DHCP server (DHCPd)

	
 ISC DHCP client (dhclient)

	
 Windows DHCP server

	
 Windows DHCP client

	

 DNS Monitoring
	
 DNS logging and monitoring

	
 BIND 9

	
 Windows DNS Server

	
 Passive DNS monitoring

	
 Docker

	
 Elastic Common Schema (ECS)

	
 Elastic Cloud

	
 Elasticsearch and Kibana

	
 F5 BIG-IP

	
 File Integrity Monitoring

	
 FreeRADIUS

	
 General Electric CIMPLICITY

	
 Google Chronicle

	
 Graylog

	
 HP ProCurve

	
 IBM QRadar SIEM

	
 Industrial Control System protocols

	
 Kubernetes

	
 Linux Audit system

	
 Linux system logs

	
 Log Event Extended Format (LEEF)

	
 LogPoint

	
 Logstash

	
 McAfee Enterprise Security Manager (ESM)

	
 Micro Focus ArcSight Logger

	
 Microsoft Active Directory Domain Controller

	
 Microsoft Azure Active Directory and Office 365

	
 Microsoft Azure Event Hubs

	
 Microsoft Defender for Identity

	
 Microsoft Exchange

	
 Microsoft IIS

	
 Microsoft Routing and Remote Access Service (RRAS)

	
 Microsoft Sentinel

	
 Microsoft SharePoint

	
 Microsoft SQL Server

	
 Microsoft System Center Configuration Manager

	
 Microsoft System Center Endpoint Protection

	
 Microsoft System Center Operations Manager

	
 MongoDB

	
 Nagios Log Server

	
 Nessus Vulnerability Scanner

	
 NetApp

	
 .NET application logs

	
 Nginx

	
 Okta

	
 Oracle Database

	
 Osquery

	
 Postfix

	
 Promise

	
 Raijin Database Engine

	
 Rapid7 InsightIDR SIEM

	
 RSA NetWitness

	
 SafeNet KeySecure

	
 Salesforce

	
 SAP

	
 Schneider Electric Citect SCADA

	
 Schneider Electric EcoStruxure Process Expert

	
 Siemens SICAM SCC

	
 Siemens SICAM PAS/PQS

	
 Siemens SIMATIC PCS 7

	
 Snare

	
 Snort

	
 Solarwinds Loggly

	
 Splunk

	
 Sumo Logic

	
 Symantec Endpoint Protection

	
 Synology DiskStation

	
 Syslog

	
 Sysmon

	
 Trellix ePolicy Orchestrator

	
 Ubiquiti UniFi

	
 VMware vCenter

	
 Windows AppLocker

	
 Windows Command Line Auditing

	
 Windows Event Forwarding

	
 Windows Event Log

	
 Windows Firewall

	
 Windows Group Policy

	
 Windows Management Instrumentation (WMI)

	

 Windows PowerShell
	
 Using PowerShell scripts

	
 Logging PowerShell activity

	
 Windows Resource Checker

	
 Windows Security audit

	
 Windows Server Failover Clustering

	
 Windows Task Scheduler

	
 Windows Time service

	
 Microsoft Windows Update

	
 Windows USB auditing

	
 Yokogawa FAST/TOOLS

	
 Zeek (formerly Bro) Network Security Monitor

	

 Troubleshooting
	
 Internal logs

	
 Common issues

	
 Debugging NXLog

	
 Generating test data

	

 NXLog EE Reference Manual
	

 Man Pages
	
 nxlog(8)

	
 nxlog-processor(8)

	
 Configuration

	
 Language

	

 Input Modules
	
 Process Accounting (im_acct)

	
 AIX Auditing (im_aixaudit)

	
 Amazon S3 (im_amazons3)

	
 Microsoft Azure (im_azure)

	
 Batched compression (im_batchcompress)

	
 Basic Security Module Auditing (im_bsm)

	
 Check Point OPSEC LEA (im_checkpoint)

	
 DBI (im_dbi)

	
 Event Tracing for Windows (im_etw)

	
 External programs (im_exec)

	
 File (im_file)

	
 File Integrity Monitoring (im_fim)

	
 Go (im_go)

	
 Google Cloud Logging (im_googlelogging)

	
 Google Cloud Pub/Sub (im_googlepubsub)

	
 HTTP(s) (im_http)

	
 Internal (im_internal)

	
 Java (im_java)

	
 Kafka (im_kafka)

	
 Kernel (im_kernel)

	
 Linux Audit System (im_linuxaudit)

	
 macOS Endpoint Security (im_maces)

	
 macOS ULS (im_maculs)

	
 Mark (im_mark)

	
 Microsoft 365 (im_ms365)

	
 Event Log for Windows XP/2000/2003 (im_mseventlog)

	
 Event Log for Windows 2008/Vista/later (im_msvistalog)

	
 Null (im_null)

	
 ODBC (im_odbc)

	
 Packet capture (im_pcap)

	
 Perl (im_perl)

	
 Named Pipes (im_pipe)

	
 Python (im_python)

	
 Redis (im_redis)

	
 Windows Registry Monitoring (im_regmon)

	
 Ruby (im_ruby)

	
 Salesforce (im_salesforce)

	
 TLS/SSL (im_ssl)

	
 Systemd (im_systemd)

	
 TCP (im_tcp)

	
 Test Generator (im_testgen)

	
 UDP (im_udp)

	
 Unix Domain Sockets (im_uds)

	
 Windows Performance Counters (im_winperfcount)

	
 Windows Event Collector (im_wseventing)

	
 ZeroMQ (im_zmq)

	

 Output Modules
	
 Amazon S3 (om_amazons3)

	
 Microsoft Azure Sentinel (om_azure)

	
 Microsoft Azure Log Ingestion (om_azuremonitor)

	
 Batched Compression (om_batchcompress)

	
 Blocker (om_blocker)

	
 DBI (om_dbi)

	
 Elasticsearch (om_elasticsearch)

	
 Program (om_exec)

	
 Files (om_file)

	
 Go (om_go)

	
 Google Chronicle (om_chronicle)

	
 Google Cloud Logging (om_googlelogging)

	
 Google Cloud Pub/Sub (om_googlepubsub)

	
 HTTP(s) (om_http)

	
 Java (om_java)

	
 Kafka (om_kafka)

	
 Null (om_null)

	
 ODBC (om_odbc)

	
 Perl (om_perl)

	
 Named Pipes (om_pipe)

	
 Python (om_python)

	
 Raijin (om_raijin)

	
 Redis (om_redis)

	
 Ruby (om_ruby)

	
 TLS/SSL (om_ssl)

	
 TCP (om_tcp)

	
 UDP (om_udp)

	
 UDP with IP Spoofing (om_udpspoof)

	
 Unix Domain Sockets (om_uds)

	
 WebHDFS (om_webhdfs)

	
 ZeroMQ (om_zmq)

	

 Extension Modules
	
 Remote Management (xm_admin)

	
 AIX Auditing (xm_aixaudit)

	
 Apple System Logs (xm_asl)

	
 Basic Security Module Auditing (xm_bsm)

	
 Common Event Format (xm_cef)

	
 Character Set Conversion (xm_charconv)

	
 Delimiter-Separated Values (xm_csv)

	
 Encryption (xm_crypto)

	
 External Programs (xm_exec)

	
 File Lists (xm_filelist)

	
 File Operations (xm_fileop)

	
 GELF (xm_gelf)

	
 Go (xm_go)

	
 Grok (xm_grok)

	
 Java (xm_java)

	
 JSON (xm_json)

	
 Key-Value Pairs (xm_kvp)

	
 LEEF (xm_leef)

	
 Microsoft DNS Server (xm_msdns)

	
 Multiline Parser (xm_multiline)

	
 NetFlow (xm_netflow)

	
 Microsoft Network Policy Server (xm_nps)

	
 Pattern Matcher (xm_pattern)

	
 Perl (xm_perl)

	
 Python (xm_python)

	
 Resolver (xm_resolver)

	
 Rewrite (xm_rewrite)

	
 Ruby (xm_ruby)

	
 SAP (xm_sap)

	
 SNMP Traps (xm_snmp)

	
 Remote Management (xm_soapadmin)

	
 Syslog (xm_syslog)

	
 W3C (xm_w3c)

	
 WTMP (xm_wtmp)

	
 XML (xm_xml)

	
 Compression (xm_zlib)

	

 Processor Modules
	
 Blocker (pm_blocker)

	
 Buffer (pm_buffer)

	
 Event Correlator (pm_evcorr)

	
 HMAC Message Integrity (pm_hmac)

	
 HMAC Message Integrity Checker (pm_hmac_check)

	
 De-Duplicator (pm_norepeat)

	
 Null (pm_null)

	
 Pattern Matcher (pm_pattern)

	
 Release notes

	
 Changelog

	

 NXLog Community Edition Reference Manual
	

 Man Pages
	
 nxlog(8)

	
 nxlog-processor(8)

	
 Configuration

	
 Language

	

 Extension Modules
	
 Character Set Conversion (xm_charconv)

	
 Delimiter-Separated Values (xm_csv)

	
 External Programs (xm_exec)

	
 File Operations (xm_fileop)

	
 GELF (xm_gelf)

	
 Grok (xm_grok)

	
 JSON (xm_json)

	
 Key-Value Pairs (xm_kvp)

	
 Multi-Line Parser (xm_multiline)

	
 Perl (xm_perl)

	
 Python (xm_python)

	
 Syslog (xm_syslog)

	
 WTMP (xm_wtmp)

	
 XML (xm_xml)

	

 Input Modules
	
 Fields

	
 DBI (im_dbi)

	
 External Programs (im_exec)

	
 Files (im_file)

	
 Internal (im_internal)

	
 Kernel (im_kernel)

	
 Mark (im_mark)

	
 EventLog for Windows XP/2000/2003 (im_mseventlog)

	
 EventLog for Windows 2008/Vista and Later (im_msvistalog)

	
 Null (im_null)

	
 Perl (im_perl)

	
 Named Pipes (im_pipe)

	
 Python (im_python)

	
 TLS/SSL (im_ssl)

	
 Systemd (im_systemd)

	
 TCP (im_tcp)

	
 UDP (im_udp)

	
 Unix Domain Sockets (im_uds)

	

 Processor Modules
	
 Blocker (pm_blocker)

	
 Buffer (pm_buffer)

	
 Event Correlator (pm_evcorr)

	
 De-Duplicator (pm_norepeat)

	
 Null (pm_null)

	
 Pattern Matcher (pm_pattern)

	
 Format Converter (pm_transformer)

	

 Output Modules
	
 Blocker (om_blocker)

	
 DBI (om_dbi)

	
 Program (om_exec)

	
 Files (om_file)

	
 HTTP(s) (om_http)

	
 Null (om_null)

	
 Perl (om_perl)

	
 Python (om_python)

	
 Raijin (om_raijin)

	
 TLS/SSL (om_ssl)

	
 TCP (om_tcp)

	
 UDP (om_udp)

	
 Unix Domain Sockets (om_uds)

	
 Troubleshooting

	
 Release notes

	
 Changelog

	

 NXLog Manager User Guide
	
 Introduction

	
 Requirements for Installation

	

 Installation
	
 NXLog Agent Installation

	
 Installing on Debian Stretch and Buster

	
 Installing on RHEL 6 & 7

	
 Installing as Docker Application

	
 Deploying on AWS

	
 Configuring NXLog Manager for Standalone Mode

	
 Configuring NXLog Manager for cluster mode

	
 Database Initialization

	
 Starting NXLog Manager

	
 NXLog Manager Configuration

	
 Enabling HTTPS for NXLog Manager

	
 Raise the Open File Limit for NXLog Manager Using systemd

	
 Increasing the Heap Size for NXLog Manager

	
 Upgrading NXLog Manager

	
 Host Setup Common Issues

	
 Scaling NXLog Manager

	
 Dashboard

	
 Fields

	
 Patterns

	
 Correlation

	

 Agents
	
 Agent-Manager Connectivity

	
 Agent Names and Addresses

	
 Agent Visibility

	
 Agent Management

	
 Agent Information

	
 Agent Configuration

	
 Module Configuration

	
 Templates

	
 Agent Groups

	
 Certificates

	
 Settings

	
 Users, roles, and access control

	

 RESTful web services
	
 Agent services

	
 Manager services

	
 Certificate services

	
 Release notes

	
 Changelog

	

 NXLog Add-Ons
	
 Amazon S3

	
 Box

	
 Cisco FireSIGHT eStreamer

	
 Cisco Intrusion Prevention Systems (CIDEE)

	
 Exchange (nxlog-xchg)

	
 Google Logging API

	
 Microsoft Azure and Office 365

	
 MSI for NXLog agent setup

	
 Okta

	
 Perlfcount

	
 Salesforce

	
 NXLog Glossary & Terms

 NXLog CE Reference Manual
 v3.2

 	
 NXLog User Guide
 	
 current

	
 NXLog EE Reference Manual
 	
 v6.2

	
 v6.1

	
 v6.0

	
 v5.10

	
 v5.9

	
 v5.8

	
 v5.7

	
 v5.6

	
 v5.5

	
 NXLog CE Reference Manual
 	
 v3.2

	
 v3.1

	
 v3.0

	
 NXLog Manager User Guide
 	
 v5.7.5961

	
 NXLog Add-Ons
 	
 current

	
 NXLog Glossary
 	
 current

 	NXLog CE Reference Manual
	NXLog Community Edition Reference Manual

 v3.2

 v3.2
 v3.1
 v3.0

NXLog Community Edition Reference Manual

NXLog Ltd. — Version v3.2, April 2023 | Copyright © NXLog Ltd. 2023

Man Pages

	
nxlog(8) — The manual page for the main NXLog agent

	
nxlog-processor(8) — The manual page for the NXLog offline processor

Configuration

An NXLog configuration consists of global directives, module
instances, and routes. The following sections list the core NXLog
directives provided. Additional directives are provided at the module level.
A valid configuration must contain at least one input module instance and at
least one output module instance.

A module instance name may contain letters, digits, periods (.), and
underscores (_). The first character in a module instance name must
be a letter or an underscore. The corresponding regular expression is
[a-zA-Z_][a-zA-Z0-9._]*.

A route instance name may contain letters, digits, periods (.), and
underscores (_). The first character in a route instance name must be
a letter, a digit, or an underscore. The corresponding regular expression is
[a-zA-Z0-9_][a-zA-Z0-9._]*.

General Directives

The following directives can be used throughout the configuration
file. These directives are handled by the configuration parser, and
substitutions occur before the configuration check.

	define
	
Use this directive to configure a constant or macro to be
used later. Refer to a define by surrounding the name with percent
signs (%). Enclose a group of statements with curly braces ({}).

Example 1. Using the define Directive

This configuration shows three example defines: BASEDIR is a
constant, IMPORTANT is a statement, and WARN_DROP is a group of
statements.

nxlog.conf

define BASEDIR /var/log
define IMPORTANT if $raw_event =~ /important/ \
 $Message = 'IMPORTANT ' + $raw_event;
define WARN_DROP { log_warning("dropping message"); drop(); }

<Input messages>
 Module im_file
 File '%BASEDIR%/messages'
</Input>

<Input proftpd>
 Module im_file
 File '%BASEDIR%/proftpd.log'
 <Exec>
 %IMPORTANT%
 if $raw_event =~ /dropme/ %WARN_DROP%
 </Exec>
</Input>

	include
	
This directive allows a specified file to be included in the
current configuration file. Wildcarded filenames are supported.

	

	
The SpoolDir directive only takes
 effect after the configuration is parsed, so relative paths
 specified with the include directive must be relative to the
 working directory NXLog was started from.

Example 2. Using the include Directive

This example includes a file relative to the directory NXLog
is started from:

nxlog.conf

include modules/module1.conf

This example includes all matching files and uses an absolute path:

nxlog.conf

include /etc/nxlog.d/*.conf

Global Directives

	CacheDir
	
This directive specifies a directory where the cache file
(configcache.dat) should be written. This directive has a
compiled-in value which is used by default.

	FlowControl
	
This optional boolean directive specifies whether all
input and processor modules should use flow control. This defaults
to TRUE. See the description of the module level
FlowControl directive for more
information.

	Group
	
Similar to User, NXLog will set
the group ID to run under. The group can be specified by name or
numeric ID. This directive has no effect when running on the Windows
platform or with [nxlog-processor-8].

	IgnoreErrors
	
If set to FALSE, NXLog will stop when it
encounters a problem with the configuration file (such as an invalid
module directive) or if there is any other problem which would
prevent all modules functioning correctly. If set to TRUE,
NXLog will start after logging the problem. The default
value is TRUE.

	LogFile
	
NXLog will write its internal log to this file. If
this directive is not specified, self logging is disabled. Note that
the im_internal module can also be used to direct
internal log messages to files or different output destinations, but
this does not support log level below INFO. This LogFile
directive is especially useful for debugging.

	LogLevel
	
This directive has five possible values: CRITICAL,
ERROR, WARNING, INFO, and DEBUG. It will set both the
logging level used for LogFile and the
standard output if NXLog is started in the foreground. The
default LogLevel is INFO.

	ModuleDir
	
By default the NXLog binaries have a compiled-in
value for the directory to search for loadable modules. This can be
overridden with this directive. The module directory contains
sub-directories for each module type (extension, input, output, and
processor), and the module binaries are located in those.

	NoCache
	
Some modules save data to a cache file which is persisted
across a shutdown/restart. Modules such as im_file will
save the file position in order to continue reading from the same
position after a restart as before. This caching mechanism can be
explicitly turned off with this directive. This is mostly useful
with [nxlog-processor-8] in offline mode. If
this boolean directive is not specified, it defaults to FALSE
(caching is enabled).
Note that many input modules, such as im_file, provide a
SavePos directive that can be used to disable the
position cache for a specific module instance. SavePos has no effect if
the cache is disabled globally with NoCache TRUE.

	NoFreeOnExit
	
This directive is for debugging. When set to TRUE,
NXLog will not free module resources on exit, allowing
valgrind to show proper stack trace locations in module function
calls. The default value is FALSE.

	Panic
	
A panic condition is a critical state which usually indicates
a bug. Assertions are used in NXLog code for checking
conditions where the code will not work unless the asserted
condition is satisfied, and for security. Failing assertions result
in a panic and suggest a bug in the code. A typical case is checking
for NULL pointers before pointer dereference. This directive can
take three different values: HARD, SOFT, or OFF. HARD will
cause an abort in case the assertion fails. This is how most C based
programs work. SOFT will cause an exception to be thrown at the
place of the panic/assertion. In case of NULL pointer checks this is
identical to a NullPointerException in Java. It is possible that
NXLog can recover from exceptions and can continue to
process log messages, or at least the other modules can. In case of
assertion failure the location and the condition is printed at
CRITICAL log level in HARD mode and ERROR log level in SOFT
mode. If Panic is set to OFF, the failing condition is printed
in the logs but the execution will continue on the normal code
path. Most of the time this will result in a segmentation fault or
other undefined behavior, though in some cases turning off a buggy
assertion or panic will solve the problems caused by it in
HARD/SOFT mode. The default value for Panic is SOFT.

	PidFile
	
Under Unix operating systems, NXLog writes a PID
file as other system daemons do. The default PID file can be
overridden with this directive in case multiple daemon instances
need to be running. This directive has no effect when running on the
Windows platform or with [nxlog-processor-8].

	RootDir
	
NXLog will set its root directory to the value
specified with this directive. If
SpoolDir is also set, this will be
relative to the value of RootDir (chroot() is called first). This
directive has no effect when running on the Windows platform or with
the [nxlog-processor-8].

	SpoolDir
	
NXLog will change its working directory to the
value specified with this directive. This is useful with files
created through relative filenames (for example, with
om_file) and in case of core dumps. This directive has
no effect with the [nxlog-processor-8].

	SuppressRepeatingLogs
	
Under some circumstances it is possible for
NXLog to generate an extreme amount of internal logs
consisting of the same message due to an incorrect configuration or a
software bug. In this case, the LogFile
can quickly consume the available disk space. With this directive,
NXLog will write at most 2 lines per second if the same
message is generated successively, by logging "last message repeated
n times" messages. If this boolean directive is not specified, it
defaults to TRUE (suppression of repeating messages is enabled).

	Threads
	
This directive specifies the number of worker threads
to use. The number of the worker threads is calculated and set to an
optimal value if this directive is not defined. Do not set this
unless you know what you are doing.

	User
	
NXLog will drop to the user specified with this
directive. This is useful if NXLog needs privileged access
to some system resources (such as kernel messages or to bind a port
below 1024). On Linux systems NXLog will use capabilities to
access these resources. In this case NXLog must be started
as root. The user can be specified by name or numeric ID. This
directive has no effect when running on the Windows platform or with
[nxlog-processor-8].

Common Module Directives

The following directives are common to all modules. The
Module directive is mandatory.

	Module
	
This mandatory directive specifies which binary should be
loaded. The module binary has a .so extension on Unix and a .dll
on Windows platforms and resides under the
ModuleDir location. Each module binary
name is prefixed with im_, pm_, om_, or xm_ (for input,
processor, output, and extension, respectively).
It is possible for multiple instances to use the same loadable
binary. In this case the binary is only loaded once but instantiated
multiple times. Different module instances may have different
configurations.

	FlowControl
	

This optional boolean directive specifies whether the module instance should
use flow control. FlowControl is only valid for Input and Processor
modules. By default,
FlowControl is TRUE (enabled). This module-level directive can be used to
override the global FlowControl directive.

When flow control is in effect, a module (Input or Processor) which tries to
forward log data to the next module in the route will be suspended if the next
module cannot accept more data. For example, if a network module (such as
om_tcp) cannot forward logs because of a network error, the
preceding module in the route will be paused. When flow control is disabled,
the module will drop the log record if the queue of the next module in the
route is full.

Disabling flow control can be useful when multiple output modules are
configured to store or forward log data. When flow control is enabled, the
output modules will only process log data if all outputs are
functional. Consider the case where log data is stored in a file using
om_file and also forwarded over the network using
om_tcp. When flow control is enabled, a network disconnection will
make the data flow stall and log data will not be written into the local file
either. With flow control disabled, NXLog will write log data to the
file and will drop messages that cannot be forwarded over the network.

	

	
Suspending an im_udp instance is ineffective, because UDP provides
no receipt acknowledgement.
Suspending an im_uds instance when collecting local Syslog messages
from the /dev/log Unix domain socket will cause the syslog() system call to
block in any programs trying to write to the system log.
It is generally recommended to disable flow control in these cases.

	InputType
	

This directive specifies the name of the registered input reader function to
be used for parsing raw events from input data. Names are treated case
insensitively. This directive is only available for stream oriented input
modules: im_file, im_exec, im_ssl,
im_tcp, im_udp, and im_uds. These modules
work by filling an input buffer with data read from the source. If the read
operation was successful (there was data coming from the source), the module
calls the specified callback function. If this is not explicitly specified,
the module default will be used. Note that im_udp may only work properly if
log messages do not span multiple packets and are within the UDP message size
limit. Otherwise the loss of a packet may lead to parsing errors.

Modules may provide custom input reader functions. Once these are registered
into the NXLog core, the modules listed above will be capable of using
these. This makes it easier to implement custom protocols because these can be
developed without concern for the transport layer.

The following input reader functions are provided by the NXLog core:

	Binary
	
The input is parsed in the NXLog binary format, which
preserves the parsed fields of the event records. The
LineBased reader will automatically
detect event records in the binary NXLog format, so it is
only recommended to configure InputType to Binary if compatibility
with other logging software is not required.

	Dgram
	
Once the buffer is filled with data, it is considered to be
one event record. This is the default for the im_udp
input module, since UDP Syslog messages arrive in separate packets.

	LineBased
	
The input is assumed to contain event records separated by
newlines. It can handle both CRLF (Windows) and LF (Unix)
line-breaks. Thus if an LF (\n) or CRLF (\r\n) is found, the
function assumes that it has reached the end of the event record.

Example 3. TCP Input Assuming NXLog Format

This configuration explicitly specifies the Binary
InputType.

nxlog.conf

<Input tcp>
 Module im_tcp
 Port 2345
 InputType Binary
</Input>

	OutputType
	

This directive specifies the name of the registered output writer function to
be used for formatting raw events when storing or forwarding output. Names are
treated case insensitively. This directive is only available for stream
oriented output modules: om_file, om_exec,
om_ssl, om_tcp, om_udp, and
om_uds. These modules work by filling the output buffer with data
to be written to the destination. The specified callback function is called
before the write operation. If this is not explicitly specified, the module
default will be used.

Modules may provide custom output formatter functions. Once these are
registered into the NXLog core, the modules listed above will
be capable of using these. This makes it easier to implement custom
protocols because these can be developed without concern for the
transport layer.

The following output writer functions are provided by the NXLog core:

	Binary
	
The output is written in the NXLog binary format
which preserves parsed fields of the event records.

	Dgram
	
Once the buffer is filled with data, it is considered to be
one event record. This is the default for the om_udp
output module, since UDP Syslog messages are sent in separate
packets.

	LineBased
	
The output will contain event records separated by
newlines. The record terminator is CRLF (\r\n).

Example 4. TCP Output Sending Messages in NXLog Format

This configuration explicitly specifies the
Binary OutputType.

nxlog.conf

<Output tcp>
 Module om_tcp
 Port 2345
 Host localhost
 OutputType Binary
</Output>

Exec

The Exec directive/block contains statements in
the NXLog language which are executed when a module
receives a log message. This directive is available in all
input, processor, and
output modules. It is not available in most
extension modules because these do not handle
log messages directly (the xm_multiline and
xm_rewrite modules do provide Exec directives).

Example 5. Simple Exec Statement

This statement assigns a value to the $Hostname field in the event
record.

nxlog.conf

Exec $Hostname = 'myhost';

Each directive must be on one line unless it contains a trailing
backslash (\) character.

Example 6. Exec Statement Spanning Multiple Lines

This if statement uses line continuation to span
multiple lines.

nxlog.conf

Exec if $Message =~ /something interesting/ \
 log_info("found something interesting"); \
 else \
 log_debug("found nothing interesting");

More than one Exec directive or block may be specified. They are
executed in the order of appearance. Each Exec directive must
contain a full statement. Therefore it is not possible to split the
lines in the previous example into multiple Exec directives. It is
only possible to split the Exec directive if it contains multiple
statements.

Example 7. Equivalent Use of Statements in Exec

This example shows two equivalent uses of the Exec directive.

nxlog.conf

Exec log_info("first"); \
 log_info("second");

This produces identical behavior:

nxlog.conf

Exec log_info("first");
Exec log_info("second");

The Exec directive can also be used as a block. To use multiple
statements spanning more than one line, it is recommended to use the
<Exec> block instead. When using a block, it is not necessary to use
the backslash (\) character for line continuation.

Example 8. Using the Exec Block

This example shows two equivalent uses of Exec, first as a
directive, then as a block.

nxlog.conf

Exec log_info("first"); \
 log_info("second");

The following Exec block is equivalent. Notice the backslash (\)
is omitted.

nxlog.conf

<Exec>
 log_info("first");
 log_info("second");
</Exec>

Schedule

The Schedule block can be used to execute periodic jobs, such as log
rotation or any other task. Scheduled jobs have the same priority as
the module. The Schedule block has the following directives:

	Every
	
In addition to the crontab format it is possible to schedule
execution at periodic intervals. With the crontab format it is not
possible to run a job every five days for example, but this
directive enables it in a simple way. It takes an integer value with
an optional unit. The unit can be one of the following: sec,
min, hour, day, or week. If the unit is not specified, the
value is assumed to be in seconds.

	Exec
	
The mandatory Exec directive takes one or more NXLog
statements. This is the code which is actually
being scheduled. Multiple Exec directives can be specified within
one Schedule block. See the module-level
Exec directive, this behaves the same. Note
that it is not possible to use fields in statements
here because execution is not triggered by log messages.

	First
	
This directive sets the first execution time. If the value is
in the past, the next execution time is calculated as if
NXLog has been running since and jobs will not be run to
make up for missed events in the past. The directive takes a
datetime literal value.

	When
	
This directive takes a value similar to a crontab entry: five
space-separated definitions for minute, hour, day, month, and
weekday. See the crontab(5) manual for the field definitions. It
supports lists as comma separated values and/or ranges. Step values
are also supported with the slash. Month and week days are not
supported, these must be defined with numeric values. The following
extensions are also supported:

@yearly Run once a year, "0 0 1 1 *".
@annually (same as @yearly)
@monthly Run once a month, "0 0 1 * *".
@weekly Run once a week, "0 0 * * 0".
@daily Run once a day, "0 0 * * *".
@midnight (same as @daily)
@hourly Run once an hour, "0 * * * *".

Example 9. Scheduled Exec Statements

This example shows two scheduled Exec
statements in a im_tcp module instance. The first is
executed every second, while the second uses a crontab(5) style value.

nxlog.conf

<Input in>
 Module im_tcp
 Port 2345

 <Schedule>
 Every 1 sec
 First 2010-12-17 00:19:06
 Exec log_info("scheduled execution at " + now());
 </Schedule>

 <Schedule>
 When 1 */2 2-4 * *
 Exec log_info("scheduled execution at " + now());
 </Schedule>
</Input>

Route Directives

The following directives can be used in Route blocks. The
Path directive is mandatory.

	Path
	

The data flow is defined by the Path directive. First the instance names of
Input modules are specified. If more than one Input reads log messages which
feed data into the route, then these must be separated by commas. The list of
Input modules is followed by an arrow (=>). Either processor modules or
output modules follow. Processor modules must be separated by arrows, not
commas, because they operate in series, unlike Input and Output modules which
work in parallel. Output modules are separated by commas. The Path must
specify at least an Input and an Output. The syntax is illustrated by the
following:

Path INPUT1[, INPUT2...] => [PROCESSOR1 [=> PROCESSOR2...] =>]
OUTPUT1[, OUTPUT2...]

Example 10. Specifying Routes

The following configuration shows modules being used in three
different routes.

nxlog.conf

<Input in1>
 Module im_null
</Input>

<Input in2>
 Module im_null
</Input>

<Processor p1>
 Module pm_null
</Processor>

<Processor p2>
 Module pm_null
</Processor>

<Output out1>
 Module om_null
</Output>

<Output out2>
 Module om_null
</Output>

<Route 1>
 # Basic route
 Path in1 => out1
</Route>

<Route 2>
 # Basic route with one processor module
 Path in1 => p1 => out1
</Route>

<Route 3>
 # Complex route with multiple input/output/processor modules
 Path in1, in2 => p1 => p2 => out1, out2
</Route>

	Priority
	

This directive takes an integer value in the range of 1-100 as a parameter,
and the default is 10. Log messages in routes with a lower Priority value
will be processed before others. Internally, this value is assigned to each
module part of the route. The events of the modules are processed in priority
order by the NXLog engine. Modules of a route with a lower Priority
value (higher priority) will process log messages first.

Example 11. Prioritized Processing

This configuration prioritizes the UDP route over the TCP route in order to
minimize loss of UDP Syslog messages when the system is busy.

nxlog.conf

<Input tcpin>
 Module im_tcp
 Host localhost
 Port 514
</Input>

<Input udpin>
 Module im_udp
 Host localhost
 Port 514
</Input>

<Output tcpfile>
 Module om_file
 File "/var/log/tcp.log"
</Output>

<Output udpfile>
 Module om_file
 File "/var/log/udp.log"
</Output>

<Route udp>
 Priority 1
 Path udpin => udpfile
</Route>

<Route tcp>
 Priority 2
 Path tcpin => tcpfile
</Route>

Language

Types

The following types are provided by the NXLog language.

	Unknown
	
This is a special type for values where the type cannot be
determined at compile time and for uninitialized values. The
undef literal and fields
without a value also have an unknown type. The unknown type can also
be thought of as "any" in case of function and procedure API
declarations.

	Boolean
	
A boolean value is TRUE, FALSE or undefined. Note that an
undefined value is not the same as a FALSE value.

	Integer
	
An integer can hold a signed 64 bit value in addition to
the undefined value. Floating point values are not supported.

	String
	
A string is an array of characters in any character set. The
binary type should be used for values where the
NUL byte can also occur. An undefined string is not the same as an
empty string. Strings have a limited length to prevent resource
exhaustion problems, this is a compile-time value currently set to
1M.

	Datetime
	
A datetime holds a microsecond value of time elapsed since
the Epoch. It is always stored in UTC/GMT.

	IPv4 Address
	
An ip4addr type stores a dotted-quad IPv4 address in an
internal format (integer).

	IPv6 Address
	
An ip6addr type stores an IPv6 address in an internal
format.

	Regular expression
	
A regular expression type can only be used with
the =~ or !~
operators.

	Binary
	
This type can hold an array of bytes.

	Variadic arguments
	
This is a special type only used in function and
procedure API declarations to indicate variadic arguments.

Expressions

Literals

	Undef
	
The undef literal has an unknown
type. It can be also used in an
assignment to unset the value of a
field.

Example 12. Un-Setting the Value of a Field

This statement unsets the $ProcessID field.

$ProcessID = undef;

	Boolean
	
A boolean literal is either TRUE or FALSE. It is
case-insensitive, so True, False, true, and false are also
valid.

	Integer
	
An integer starts with a minus (-) sign if it is
negative. A "0X" or "0x" prepended modifier indicates a hexadecimal
notation. The "K", "M" and "G" modifiers are also supported; these
mean Kilo (1024), Mega (1024^2), or Giga (1024^3) respectively when
appended.

Example 13. Setting an Integer Value

This statement uses a modifier to set the $Limit field to 44040192
(42×1024^2).

$Limit = 42M;

	String
	
String literals are quoted characters using either single or
double quotes. String literals specified with double quotes can
contain the following escape sequences.

	\\
	
The backslash (\) character.

	\"
	
The double quote (") character.

	\n
	
Line feed (LF).

	\r
	
Carriage return (CR).

	\t
	
Horizontal tab.

	\b
	
Audible bell.

	\xXX
	
A single byte in the form of a two digit hexadecimal
number. For example the line-feed character can also be expressed
as \x0A.

	

	
String literals in single quotes do not process the escape
 sequences: "\n" is a single character (LF) while '\n' is two
 characters. The following comparison is FALSE for this reason:
 "\n" == '\n'.

	

	
Extra care should be taken with the backslash when using double
 quoted string literals to specify file paths on Windows.
 For more information about the possible complications, see
 this note for the im_file File
 directive.

Example 14. Setting a String Value

This statement sets the $Message field to the specified string.

$Message = "Test message";

	Regular expression
	
Regular expressions must be quoted with slashes
as in Perl. Captured substrings are accessible through a numeric
reference such as $1. The full subject string is placed into $0.

Example 15. A regular expression match operation

if $Message =~ /^Test (\S+)/ log_info("captured: " + $1);

	Datetime
	
A datetime literal is an unquoted representation of a time
value expressing local time in the format of YYYY-MM-DD hh:mm:ss.

Example 16. Setting a Datetime Value

This statement sets the $EventTime field to the specified datetime
value.

$EventTime = 2000-01-02 03:04:05;

	IPv4 Address
	
An IPv4 literal value is expressed in dotted quad notation
such as 192.168.1.1.

	IPv6 Address
	
An IPv6 literal value is expressed by 8 groups of
16-bit hexadecimal values separated by colons (:) such as
2001:0db8:85a3:0000:0000:8a2e:0370:7334.

Fields

Fields are referenced in the NXLog language by prepending a
dollar sign ($) to the field name.

Normally, a field name may contain letters, digits, the period (.), and the
underscore (_). Additionally, field names must begin with a letter or
an underscore. The corresponding regular expression is:

[a-zA-Z_][a-zA-Z0-9._]*

However, those restrictions are relaxed if the field name is specified with
curly braces ({}). In this case, the field name may also contain hyphens
(-), parentheses (()), and spaces. The field name may also begin with any
one of the allowed characters. The regular expression in this case is:

[a-zA-Z0-9._() -]+

Example 17. Referencing a Field

This statement generates an internal log message indicating the time when the
message was received by NXLog.

log_debug('Message received at ' + $EventReceivedTime);

This statement uses curly braces ({}) to refer to a field with a hyphenated
name.

log_info('The file size is ' + ${file-size});

A field which does not exist has an unknown
type.

Operations

Unary Operations

The following unary operations are available. It is possible to use
brackets around the operand to make it look like a function call as in
the "defined" example below.

	not
	
The not operator expects a boolean value. It will evaluate to
undef if the value is undefined. If it receives an unknown value
which evaluates to a non-boolean, it will result in a run-time
execution error.

Example 18. Using the "not" Operand

If the $Success field has a value of false, an error is logged.

if not $Success log_error("Job failed");

	defined
	
The defined operator will evaluate to TRUE if the operand
is defined, otherwise FALSE.

Example 19. Using the Unary "defined" Operation

This statement is a no-op, it does nothing.

if defined undef log_info("never printed");

If the $EventTime field has not been set (due perhaps to failed
parsing), it will be set to the current time.

if not defined($EventTime) $EventTime = now();

Binary Operations

The following binary operations are available.

The operations are described with the following syntax:

LEFT_OPERAND_TYPE OPERATION RIGHT_OPERAND_TYPE = EVALUATED_VALUE_TYPE

	=~
	
This is the regular expression match operation as in Perl. The
PCRE engine is used to to execute the regular expressions. This
operation takes a string and a regexp operand and evaluates to a
boolean value which will be TRUE if the regular expression matches
the subject string. Captured sub-strings are accessible through
numeric reference, such as $1, and the full subject string is
placed into $0.

	
string =~ regexp =
boolean

	
regexp =~ string =
boolean

Example 20. Regular Expression Based String Matching

A log message will be generated if the $Message field matches the
regular expression.

if $Message =~ /^Test message/ log_info("matched");

Regular expression based string substitution is also supported with
the s/// operator.

The following regular expression
modifiers are supported:

	g
	
The /g modifier can be used for global replacement.

Example 21. Replace Whitespace Occurrences

if $SourceName =~ s/\s/_/g log_info("removed all whitespace in SourceName");

	s
	
The dot (.) normally matches any character except
newline. The /s modifier causes the dot to match all characters
including line terminator characters (LF and CRLF).

Example 22. Dot Matches All Characters

if $Message =~ /^Backtrace.*END$/s drop();

	m
	
The /m modifier can be used to treat the string as multiple
lines (^ and $ match newlines within data).

	i
	
The /i modifier does case insensitive matching.

Variables and captured sub-string references cannot be used inside the
regular expression or the regexp substitution operator (they will be
treated literally).

	!~
	
This is the opposite of =~: the
expression will evaluate to TRUE if the regular expression does not
match on the subject string. It can be also written as
not LEFT_OPERAND =~
RIGHT_OPERAND.

	
string !~ regexp =
boolean

	
regexp !~ string =
boolean

The s/// substitution operator is also supported.

Example 23. Regular Expression Based Negative String Matching

A log message will be generated if the $Message field does not match
the regular expression.

if $Message !~ /^Test message/ log_info("didn't match");

	==
	
This operator compares two values for equality. Comparing a
defined value with an undefined results in
undef.

	
undef == undef =
TRUE

	
string == string =
boolean

	
integer == integer =
boolean

	
boolean == boolean =
boolean

	
datetime == datetime =
boolean

	
ip4addr == ip4addr =
boolean

	
ip4addr == string =
boolean

	
string == ip4addr =
boolean

Example 24. Equality

A log message will be generated if $SeverityValue is 1.

if $SeverityValue == 1 log_info("severity is one");

	!=
	
This operator compares two values for inequality. Comparing a
defined value with an undefined results in
undef.

	
undef != undef =
FALSE

	
string != string =
boolean

	
integer != integer =
boolean

	
boolean != boolean =
boolean

	
datetime != datetime =
boolean

	
ip4addr != ip4addr =
boolean

	
ip4addr != string =
boolean

	
string != ip4addr =
boolean

Example 25. Inequality

A log message will be generated if $SeverityValue is not 1.

if $SeverityValue != 1 log_info("severity is not one");

	<
	
This operation will evaluate to TRUE if the left operand is less
than the right operand, and FALSE otherwise. Comparing a defined
value with an undefined results in undef.

	
integer < integer =
boolean

	
datetime < datetime =
boolean

Example 26. Less

A log message will be generated if $SeverityValue is less than 1.

if $SeverityValue < 1 log_info("severity is less than one");

	<=
	
This operation will evaluate to TRUE if the left operand is less
than or equal to the right operand, and FALSE otherwise. Comparing a
defined value with an undefined results in
undef.

	
integer <= integer =
boolean

	
datetime <= datetime =
boolean

Example 27. Less or Equal

A log message will be generated if $SeverityValue is less than or
equal to 1.

if $SeverityValue < 1 log_info("severity is less than or equal to one");

	>
	
This operation will evaluate to TRUE if the left operand is
greater than the right operand, and FALSE otherwise. Comparing a
defined value with an undefined results in
undef.

	
integer > integer =
boolean

	
datetime > datetime =
boolean

Example 28. Greater

A log message will be generated if $SeverityValue is greater than 1.

if $SeverityValue > 1 log_info("severity is greater than one");

	>=
	
This operation will evaluate to TRUE if the left operand is
greater than or equal to the right operand, and FALSE
otherwise. Comparing a defined value with an undefined results in
undef.

	
integer >= integer =
boolean

	
datetime >= datetime =
boolean

Example 29. Greater or Equal

A log message will be generated if $SeverityValue is greater than or
equal to 1.

if $SeverityValue >= 1 log_info("severity is greater than or equal to one");

	and
	
This operation evaluates to TRUE if and only if both operands
are TRUE. The operation will evaluate to
undef if either operand is undefined.

boolean and boolean =
 boolean

Example 30. And Operation

A log message will be generated only if both $SeverityValue equals 1
and $FacilityValue equals 2.

if $SeverityValue == 1 and $FacilityValue == 2 log_info("1 and 2");

	or
	
This operation evaluates to TRUE if either operand is TRUE. The
operation will evaluate to undef if both
operands are undefined.

boolean or boolean =
 boolean

Example 31. Or Operation

A log message will be generated if $SeverityValue is equal to either
1 or 2.

if $SeverityValue == 1 or $SeverityValue == 2 log_info("1 or 2");

	+
	
This operation will result in an integer if both operands are
integers. If either operand is a string, the result will be a string
where non-string typed values are converted to strings. In this case
it acts as a concatenation operator, like the dot (.) operator in
Perl. Adding an undefined value to a non-string will result in
undef.

	
integer + integer =
integer

	
string + undef =
string

	
undef + string =
string

	
undef + undef =
undef

	
string + string =
string (Concatenate two strings.)

	
datetime + integer =
 datetime (Add the number of seconds in the
right value to the datetime stored in the left value.)

	
integer + datetime =
 datetime (Add the number of seconds in the
left value to the datetime stored in the right value.)

Example 32. Concatenation

This statement will always cause a log message to be generated.

if 1 + "a" == "1a" log_info("this will be printed");

	-
	
Subtraction. The result will be undef if either operand is
undefined.

	
integer - integer =
integer (Subtract two integers.)

	
datetime - datetime =
 integer (Subtract two datetime types. The
result is the difference between to two expressed in microseconds.)

	
datetime - integer =
 datetime (Subtract the number of seconds from
the datetime stored in the left value.)

Example 33. Subtraction

This statement will always cause a log message to be generated.

if 4 - 1 == 3 log_info("four minus one is three");

	*
	
Multiply an integer with another. The result will be undef if
either operand is undefined.

integer * integer =
 integer

Example 34. Multiplication

This statement will always cause a log message to be generated.

if 4 * 2 == 8 log_info("four times two is eight");

	/
	
Divide an integer with another. The result will be undef if either
operand is undefined. Since the result is an integer, a fractional
part is lost.

integer / integer =
 integer

Example 35. Division

This statement will always cause a log message to be generated.

if 9 / 4 == 2 log_info("9 divided by 4 is 2");

	%
	
The modulo operation divides an integer with another and returns
the remainder. The result will be undef if either operand is
undefined.

integer % integer =
 integer

Example 36. Modulo

This statement will always cause a log message to be generated.

if 3 % 2 == 1 log_info("three mod two is one");

	IN
	
This operation will evaluate to TRUE if the left operand is equal
to any of the expressions in the list on the right, and FALSE
otherwise. Comparing a undefined value results in
undef.

unknown IN unknown,
 unknown … = boolean

Example 37. IN

A log message will be generated if $EventID is equal to any one of
the values in the list.

if $EventID IN (1000, 1001, 1004, 4001) log_info("EventID found");

	NOT IN
	
This operation is equivalent to NOT expr IN expr_list.

unknown NOT IN unknown,
 unknown … = boolean

Example 38. NOT IN

A log message will be generated if $EventID is not equal to any of
the values in the list.

if $EventID NOT IN (1000, 1001, 1004, 4001) log_info("EventID not in list");

Functions

See Functions for a list of functions provided by the
NXLog core. Additional functions are available through
modules.

Example 39. A Function Call

This statement uses the now() function to set the
field to the current time.

$EventTime = now();

It is also possible to call a function of a specific module instance.

Example 40. Calling a Function of a Specific Module Instance

This statement calls the file_name() and
file_size() functions of a defined om_file
instance named out in order to log the name and size of its currently open
output file.

log_info('Size of output file ' + out->file_name() + ' is ' + out->file_size());

Statements

The following elements can be used in statements. There is no loop
operation (for or while) in the NXLog language.

Assignment

The assignment operation is declared with an equal sign (=). It
loads the value from the expression evaluated on the right into a
field on the left.

Example 41. Field Assignment

This statement sets the $EventReceivedTime field to the value
returned by the now() function.

$EventReceivedTime = now();

Block

A block consists of one or more statements within curly braces ({}).
This is typically used with conditional
statements as in the example below.

Example 42. Conditional Statement Block

If the expression matches, both log messages will be generated.

if now() > 2000-01-01 00:00:00
{
 log_info("we are in the");
 log_info("21st century");
}

Procedures

See Procedures for a list of procedures provided by the
NXLog core. Additional procedures are available through
modules.

Example 43. A Procedure Call

The log_info() procedure generates an internal
log message.

log_info("No log source activity detected.");

It is also possible to call a procedure of a specific module instance.

Example 44. Calling a Procedure of a Specific Module Instance

This statement calls the parse_csv() procedure of a
defined xm_csv module instance named csv_parser.

csv_parser->parse_csv();

If-Else

A conditional statement starts with the if keyword followed by a
boolean expression and a statement. The else keyword, followed by
another statement, is optional. Brackets around the expression are
also optional.

Example 45. Conditional Statements

A log message will be generated if the expression matches.

if now() > 2000-01-01 00:00:00 log_info("we are in the 21st century");

This statement is the same as the previous, but uses brackets.

if (now() > 2000-01-01 00:00:00) log_info("we are in the 21st century");

This is a conditional statement block.

if now() > 2000-01-01 00:00:00
{
 log_info("we are in the 21st century");
}

This conditional statement block includes an else branch.

if now() > 2000-01-01 00:00:00
{
 log_info("we are in the 21st century");
}
else log_info("we are not yet in the 21st century");

Like Perl, the NXLog language does not have a switch
statement. Instead, this can be accomplished by using conditional
if-else statements.

Example 46. Emulating switch with if-else

The generated log message various based on the value of the $value
field.

if ($value == 1)
 log_info("1");
else if ($value == 2)
 log_info("2");
else if ($value == 3)
 log_info("3");
else
 log_info("default");

	

	
The Perl elsif and unless keywords are not supported.

Variables

A module variable can only be accessed from the same module instance
where it was created. A variable is referenced by a string value and
can store a value of any type.

See the create_var(),
delete_var(),
set_var(), and get_var()
procedures.

Statistical Counters

The following types are available for statistical counters:

	COUNT
	
Added values are aggregated, and the value of the counter is
increased if only positive integers are added until the counter is
destroyed or indefinitely if the counter has no expiry.

	COUNTMIN
	
This calculates the minimum value of the counter.

	COUNTMAX
	
This calculates the maximum value of the counter.

	AVG
	
This algorithm calculates the average over the specified
interval.

	AVGMIN
	
This algorithm calculates the average over the specified
interval, and the value of the counter is always the lowest which
was ever calculated during the lifetime of the counter.

	AVGMAX
	
Like AVGMIN, but this returns the highest value calculated during
the lifetime of the counter.

	RATE
	
This calculates the value over the specified interval. It can
be used to calculate events per second (EPS) values.

	RATEMIN
	
This calculates the value over the specified interval, and
returns the lowest rate calculated during the lifetime of the
counter.

	RATEMAX
	
Like RATEMIN, but this returns the highest rate calculated
during the lifetime of the counter.

	GRAD
	
This calculates the change of the rate of the counter over the
specified interval, which is the gradient.

	GRADMIN
	
This calculates the gradient and returns the lowest gradient
calculated during the lifetime of the counter.

	GRADMAX
	
Like GRADMIN, but this returns the highest gradient
calculated during the lifetime of the counter.

Example 47. Simple Event Correlation Using Statistical Counters

If the number of login failures exceeds 3 within 45 seconds, then an
internal log message is generated. This accomplishes the exact same
task as our previous algorithm did with
module variables, except that it is a lot simpler. In addition, this
method is more precise, because it uses the timestamp from the log
message instead of relying on the current time; consequently it is
also possible to use this for offline log analysis.

if $Message =~ /login failure/
{
 # create will not do anything if the counter already exists
 create_stat('login_failures', 'RATE', 45, $EventTime);
 add_stat('login_failures', 1, $EventTime);
 if get_stat('login_failures', $EventTime) >= 3
 log_warning(">= 3 login failures detected within 45 seconds");
}

Note that this is still not perfect because the time window used in
the rate calculation does not shift, so the
problem described in our previous
example also affects this version, and this algorithm may not work
in some situations. For this reason and for better performance, it is
better to use the event correlation module instead; it
has a Thresholded rule which uses a sliding window to overcome this
problem.

Functions

The following functions are exported by core.

	datetime datetime(integer arg)
	

Convert the integer argument, expressing the number of microseconds since epoch, to datetime.

	integer day(datetime datetime)
	

Return the day part of the time value.

	integer dayofweek(datetime datetime)
	

Return the number of days since Sunday in the range of 0-6.

	integer dayofyear(datetime datetime)
	

Return the day number of the year in the range of 1-366.

	boolean dropped()
	

Return TRUE if the currently processed event has already been
 dropped.

	datetime fix_year(datetime datetime)
	

Set the year value to the current year in a datetime which was
parsed with a missing year, such as BSD Syslog or Cisco timestamps.

	integer get_stat(string statname)
	

Return the value of the statistical counter or
 undef if it does not exist.

	integer get_stat(string statname, datetime time)
	

Return the value of the statistical counter or
 undef if it does not exist. The time argument specifies the
 current time.

	unknown get_var(string varname)
	

Return the value of the variable or undef if it
 does not exist.

	ip4addr host_ip()
	

Return the first non-loopback IP address the hostname resolves to.

	ip4addr host_ip(integer nth)
	

Return the nth non-loopback IP address the
 hostname resolves to. The nth argument starts from
 1.

	string hostname()
	

Return the hostname (short form).

	string hostname_fqdn()
	

Return the FQDN hostname. This function will return the short form if the FQDN hostname cannot be determined.

	integer hour(datetime datetime)
	

Return the hour part of the time value.

	integer integer(unknown arg)
	

Parse and convert the string argument to an integer. For datetime type it returns the number of microseconds since epoch.

	ip4addr ip4addr(integer arg)
	

Convert the integer argument to an ip4addr type.

	ip4addr ip4addr(integer arg, boolean ntoa)
	

Convert the integer argument to an ip4addr
 type. If ntoa is set to true, the integer is assumed to be in
 network byte order. Instead of 1.2.3.4 the result will be
 4.3.2.1.

	string lc(string arg)
	

Convert the string to lower case.

	integer microsecond(datetime datetime)
	

Return the microsecond part of the time value.

	integer minute(datetime datetime)
	

Return the minute part of the time value.

	integer month(datetime datetime)
	

Return the month part of the datetime value.

	datetime now()
	

Return the current time.

	datetime parsedate(string arg)
	

Parse a string containing a timestamp. Dates without timezone
information are treated as local time. The current year is used for
formats that do not include the year. An
undefined datetime type is returned
if the argument cannot be parsed, so that the user can fix the error
(for example, $EventTime = parsedate($somestring); if not
defined($EventTime) $EventTime = now();). Supported timestamp formats
are listed below.

	RFC 3164 (legacy Syslog) and variations
	

Nov 6 08:49:37
Nov 6 08:49:37
Nov 06 08:49:37
Nov 3 14:50:30.403
Nov 3 14:50:30.403
Nov 03 14:50:30.403
Nov 3 2005 14:50:30
Nov 3 2005 14:50:30
Nov 03 2005 14:50:30
Nov 3 2005 14:50:30.403
Nov 3 2005 14:50:30.403
Nov 03 2005 14:50:30.403

	RFC 1123
	
RFC 1123 compliant dates are also supported, including a
couple others which are similar such as those defined in RFC 822,
RFC 850, and RFC 1036.

Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036
Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format
Sun, 6 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
Sun, 06 Nov 94 08:49:37 GMT ; RFC 822
Sun, 6 Nov 94 08:49:37 GMT ; RFC 822
Sun, 6 Nov 94 08:49:37 GMT ; RFC 822
Sun, 06 Nov 94 08:49 GMT ; Unknown
Sun, 6 Nov 94 08:49 GMT ; Unknown
Sun, 06 Nov 94 8:49:37 GMT ; Unknown [Elm 70.85]
Sun, 6 Nov 94 8:49:37 GMT ; Unknown [Elm 70.85]
Mon, 7 Jan 2002 07:21:22 GMT ; Unknown [Postfix]
Sun, 06-Nov-1994 08:49:37 GMT ; RFC 850 with four digit years

The above formats are also recognized when the leading day of week
and/or the timezone are omitted.

	Apache/NCSA date
	
This format can be found in Apache access logs and
other sources.

24/Aug/2009:16:08:57 +0200

	ISO 8601 and RFC 3339
	
NXLog can parse the ISO format with or
without sub-second resolution, and with or without timezone
information. It accepts either a comma (,) or a dot (.) in case
there is sub-second resolution.

1977-09-06 01:02:03
1977-09-06 01:02:03.004
1977-09-06T01:02:03.004Z
1977-09-06T01:02:03.004+02:00
2011-5-29 0:3:21
2011-5-29 0:3:21+02:00
2011-5-29 0:3:21.004
2011-5-29 0:3:21.004+02:00

	Windows timestamp
	
This format is YYYYMMDDhhmmss.USEC with
an optional timezone offset.

20100426151354.537875-000
20100426151354.537875000

	Integer timestamp
	
This format is XXXXXXXXXX.USEC. The
value is expressed as an integer showing the number of seconds
elapsed since the epoch UTC. The fractional microsecond part is
optional.

1258531221.650359
1258531221

	string replace(string subject, string src, string dst)
	

Replace all occurrences of src with dst in the subject string.

	string replace(string subject, string src, string dst, integer count)
	

Replace count number occurrences of src with dst in the subject string.

	integer second(datetime datetime)
	

Return the second part of the time value.

	integer size(string str)
	

Return the size of the string str in bytes.

	string strftime(datetime datetime, string fmt)
	

Convert a datetime to a string with the given format. See the
strftime(3) manual or the Windows
strftime
reference for the format specification.

	string string(unknown arg)
	

Convert the argument to a string.

	datetime strptime(string input, string fmt)
	

Convert the string to a datetime with the given format. See the manual of strptime(3) for the format specification.

	string substr(string src, integer from)
	

Return the string starting at the byte offset
 specified in from.

	string substr(string src, integer from, integer to)
	

Return a sub-string specified with the starting
 and ending positions as byte offsets from the beginning of the
 string.

	string type(unknown arg)
	

Return the type of the variable, which can be boolean,
 integer, string, datetime, ip4addr, ip6addr, regexp,
 or binary. For values with the unknown type, it returns
 undef.

	string uc(string arg)
	

Convert the string to upper case.

	integer year(datetime datetime)
	

Return the year part of the datetime value.

Procedures

The following procedures are exported by core.

	add_stat(string statname, integer value);
	

Add value to the statistical counter using the current time.

	add_stat(string statname, integer value, datetime time);
	

Add value to the statistical counter using the time specified in the argument named time.

	add_to_route(string routename);
	

Copy the currently processed event data to the route specified. This
procedure makes a copy of the data. The original will be processed
normally. Note that flow control is explicitly disabled when moving
data with add_to_route() and the data will not be added if the queue
of the target module(s) is full.

	create_stat(string statname, string type);
	

Create a module statistical counter with the specified name using the
current time. The statistical counter will be created with an infinite
lifetime. The type argument must be one of the following to select
the required algorithm for calculating the value of the statistical
counter: COUNT, COUNTMIN, COUNTMAX, AVG, AVGMIN, AVGMAX,
RATE, RATEMIN, RATEMAX, GRAD, GRADMIN, or GRADMAX (see
Statistical Counters).

This procedure with two parameters can
only be used with COUNT, otherwise the interval parameter must be
specified (see below). This procedure will do nothing if a counter
with the specified name already exists.

	create_stat(string statname, string type, integer interval);
	

Create a module statistical counter with the specified name to be calculated over interval seconds and using the current time. The statistical counter will be created with an infinite lifetime.

	create_stat(string statname, string type, integer interval, datetime time);
	

Create a module statistical counter with the
 specified name to be calculated over interval seconds and the
 time value specified in the time argument. The statistical
 counter will be created with an infinite
 lifetime.

	create_stat(string statname, string type, integer interval, datetime time, integer lifetime);
	

Create a module statistical counter with the
 specified name to be calculated over interval seconds and the
 time value specified in the time argument. The statistical
 counter will expire after lifetime seconds.

	create_stat(string statname, string type, integer interval, datetime time, datetime expiry);
	

Create a module statistical counter with the
 specified name to be calculated over interval seconds and the
 time value specified in the time argument. The statistical
 counter will expire at expiry.

	create_var(string varname);
	

Create a module variable with the specified name. The variable will be created with an infinite lifetime.

	create_var(string varname, integer lifetime);
	

Create a module variable with the specified name
 and the lifetime given in seconds. When the lifetime expires,
 the variable will be deleted automatically and get_var(name) will
 return undef.

	create_var(string varname, datetime expiry);
	

Create a module variable with the specified
 name. The expiry specifies when the variable should be deleted
 automatically.

	debug(unknown arg, varargs args);
	

Print the argument(s) at DEBUG log level. Same as log_debug().

	delete(unknown arg);
	

Delete the field from the event. For example, delete($field).
Note that $field = undef is not the same, though after both operations
the field will be undefined.

	delete_var(string varname);
	

Delete the module variable with the specified name if it exists.

	drop();
	

Drop the event record that is currently being processed. Any further
action on the event record will result in a "missing logdata" error.

	log_debug(unknown arg, varargs args);
	

Print the argument(s) at DEBUG log level. Same as
 debug().

	log_error(unknown arg, varargs args);
	

Print the argument(s) at ERROR log level.

	log_info(unknown arg, varargs args);
	

Print the argument(s) at INFO log level.

	log_warning(unknown arg, varargs args);
	

Print the argument(s) at WARNING log level.

	rename_field(string old, string new);
	

Rename a field. For example, rename_field("old", "new").

	reroute(string routename);
	

Move the currently processed event data to the route specified. The
event data will enter the route as if it was received by an input
module there. Note that flow control is explicitly disabled when
moving data with reroute() and the data will be dropped if the queue
of the target module(s) is full.

	set_var(string varname, unknown value);
	

Set the value of a module variable. If the variable does not exist, it will be created with an infinite lifetime.

	sleep(integer interval);
	

Sleep the specified number of microseconds. This procedure is provided
for testing purposes primarily. It can be used as a poor man’s rate
limiting tool, though this use is not recommended.

Extension Modules

Extension modules do not process log messages directly, and for this
reason their instances cannot be part of a route.
These modules enhance the features of NXLog in various ways,
such as exporting new functions and procedures or registering
additional I/O reader and writer functions (to be used with modules
supporting the InputType and
OutputType directives). There are many ways to
hook an extension module into the NXLog engine, as the
following modules illustrate.

Character Set Conversion (xm_charconv)

This module provides tools for converting strings between different character
sets (codepages). All the encodings available to iconv are supported. See
iconv -l for a list of encoding names.

Configuration

The xm_charconv module accepts the following directives in addition to
the common module directives.

	AutodetectCharsets
	
This optional directive accepts a comma-separated
list of character set names. When auto is specified as the source
encoding for convert() or
convert_fields(), these character sets
will be tried for conversion.

Functions

The following functions are exported by xm_charconv.

	string convert(string source, string srcencoding, string dstencoding)
	

Convert the source string to the encoding specified in dstencoding
from srcencoding. The srcencoding argument can be set to auto to
request auto detection.

Procedures

The following procedures are exported by xm_charconv.

	convert_fields(string srcencoding, string dstencoding);
	

Convert all string type fields of a log message from srcencoding to
dstencoding. The srcencoding argument can be set to auto to
request auto detection.

Examples

Example 48. Character set auto-detection of various input encodings

This configuration shows an example of character set
auto-detection. The input file can contain differently encoded lines,
and the module normalizes output to UTF-8.

nxlog.conf

<Extension charconv>
 Module xm_charconv
 AutodetectCharsets utf-8, euc-jp, utf-16, utf-32, iso8859-2
</Extension>

<Input filein>
 Module im_file
 File "tmp/input"
 Exec convert_fields("auto", "utf-8");
</Input>

<Output fileout>
 Module om_file
 File "tmp/output"
</Output>

<Route r>
 Path filein => fileout
</Route>

Delimiter-Separated Values (xm_csv)

This module provides functions and procedures for working with data
formatted as comma-separated values (CSV). CSV input can be parsed
into fields and CSV output can be generated.
Delimiters other than the comma can be used also.

The pm_transformer module provides a simple
interface to parse and generate CSV format, but the xm_csv module
exports an API that can be used to solve more complex tasks involving
CSV formatted data.

	

	
It is possible to use more than one xm_csv module instance with
 different options in order to support different CSV formats at
 the same time. For this reason, functions and procedures
 exported by the module are public and must be referenced by the
 module instance name.

Configuration

The xm_csv module accepts the following directives in addition to the
common module directives. The
Fields directive is required.

	Fields
	
This mandatory directive accepts a comma-separated list of
fields which will be filled from the input parsed. Field names with
or without the dollar sign ($) are accepted. The fields will be
stored as strings unless their types are
explicitly specified with the
FieldTypes directive.

	Delimiter
	
This optional directive takes a single character (see
below) as argument to specify the
delimiter character used to separate fields. The default delimiter
character is the comma (,). Note that there is no delimiter after
the last field.

	EscapeChar
	
This optional directive takes a single character (see
below) as argument to specify the escape
character used to escape special characters. The escape character is
used to prefix the following characters: the escape character
itself, the quote character, and the
delimiter character. If
EscapeControl is TRUE, the newline
(\n), carriage return (\r), tab (\t), and backspace (\b)
control characters are also escaped. The default escape character is
the backslash character (\).

	EscapeControl
	
If this optional boolean directive is set to TRUE,
control characters are also escaped. See the
EscapeChar directive for details. The
default is TRUE: control characters are escaped. Note that this is
necessary to allow single line CSV field lists which contain
line-breaks.

	FieldTypes
	
This optional directive specifies the list of types
corresponding to the field names defined in
Fields. If specified, the number of types
must match the number of field names specified with
Fields. If this directive is omitted, all
fields will be stored as strings. This
directive has no effect on the fields-to-CSV conversion.

	QuoteChar
	
This optional directive takes a single character (see
below) as argument to specify the quote
character used to enclose fields. If
QuoteOptional is TRUE, then only
string type fields are quoted. The default is
the double-quote character (").

	QuoteMethod
	
This optional directive can take the following values:

	All
	
All fields will be quoted.

	None
	
Nothing will be quoted. This can be problematic if a field
value (typically text that can contain any character) contains the
delimiter character. Make sure that this is escaped or replaced
with something else.

	String
	
Only string type fields will be
quoted. This has the same effect as
QuoteOptional set to TRUE and is
the default behavior if the QuoteMethod directive is not
specified.

Note that this directive only effects CSV generation when using
to_csv(). The CSV parser can automatically
detect the quotation.

	QuoteOptional
	
This directive has been deprecated in favor of
QuoteMethod, which should be used
instead.

	UndefValue
	
This optional directive specifies a string which will be
treated as an undefined value. This is particularly useful when
parsing the W3C format where the dash (-) marks an omitted field.

Specifying Quote, Escape, and Delimiter Characters

The QuoteChar,
EscapeChar, and
Delimiter directives can be specified in
several ways.

	Unquoted single character
	
Any printable character can be specified
as an unquoted character, except for the backslash (\):

Delimiter ;

	Control characters
	
The following non-printable characters can be
specified with escape sequences:

	\a
	
audible alert (bell)

	\b
	
backspace

	\t
	
horizontal tab

	\n
	
newline

	\v
	
vertical tab

	\f
	
formfeed

	\r
	
carriage return

For example, to use TAB delimiting:

Delimiter \t

	A character in single quotes
	
The configuration parser strips
whitespace, so it is not possible to define a space as the delimiter
unless it is enclosed within quotes:

Delimiter ' '

Printable characters can also be enclosed:

Delimiter ';'

The backslash can be specified when enclosed within quotes:

Delimiter '\'

	A character in double quotes
	
Double quotes can be used like single
quotes:

Delimiter " "

The backslash can be specified when enclosed within double quotes:

Delimiter "\"

	A hexadecimal ASCII code
	
Hexadecimal ASCII character codes can also
be used by prepending 0x. For example, the space can be specified
as:

Delimiter 0x20

This is equivalent to:

Delimiter " "

Functions

The following functions are exported by xm_csv.

	string to_csv()
	

Convert the specified fields to a single CSV formatted
 string.

Procedures

The following procedures are exported by xm_csv.

	parse_csv();
	

Parse the $raw_event field as CSV input.

	parse_csv(string source);
	

Parse the given string as CSV format.

	to_csv();
	

Format the specified fields as CSV and put this into the
 $raw_event field.

Examples

Example 49. Complex CSV Format Conversion

This example shows that the xm_csv module can not only parse and
create CSV formatted input and output, but with multiple xm_csv
modules it is also possible to reorder, add, remove, or modify fields
before outputting to a different CSV format.

nxlog.conf

<Extension csv1>
 Module xm_csv
 Fields $id, $name, $number
 FieldTypes integer, string, integer
 Delimiter ,
</Extension>

<Extension csv2>
 Module xm_csv
 Fields $id, $number, $name, $date
 Delimiter ;
</Extension>

<Input in>
 Module im_file
 File "tmp/input"
 <Exec>
 csv1->parse_csv();
 $date = now();
 if not defined $number $number = 0;
 csv2->to_csv();
 </Exec>
</Input>

<Output out>
 Module om_file
 File "tmp/output"
</Output>

Input Sample

1, "John K.", 42
2, "Joe F.", 43

Output Sample

1;42;"John K.";2011-01-15 23:45:20
2;43;"Joe F.";2011-01-15 23:45:20

External Programs (xm_exec)

This module provides two procedures which make it possible to execute
external scripts or programs. These two procedures are provided
through this extension module in order to keep the NXLog core
small. Also, without this module loaded an administrator is not able
to execute arbitrary scripts.

	

	
The im_exec and om_exec modules also
 provide support for running external programs, though the
 purpose of these is to pipe data to and read data from
 programs. The procedures provided by the xm_exec module do not
 pipe log message data, but are intended for multiple invocations
 (though data can be still passed to the executed script/program
 as command line arguments).

Configuration

The xm_exec module accepts only the common module
directives.

Procedures

The following procedures are exported by xm_exec.

	exec(string command, varargs args);
	

Execute command, passing it the supplied arguments, and wait for it
to terminate. The command is executed in the caller module’s
context. Note that the module calling this procedure will block until
the process terminates. Use the
exec_async() procedure to
avoid this problem. All output written to standard output and standard
error by the spawned process is discarded.

	exec_async(string command, varargs args);
	

This procedure executes the command passing it the supplied arguments
and does not wait for it to terminate.

Examples

Example 50. NXLog Acting as a Cron Daemon

This xm_exec module instance will run the command every second without
waiting for it to terminate.

nxlog.conf

<Extension exec>
 Module xm_exec
 <Schedule>
 Every 1 sec
 Exec exec_async("/bin/true");
 </Schedule>
</Extension>

Example 51. Sending Email Alerts

If the $raw_event field matches the regular expression, an email
will be sent.

nxlog.conf

<Extension exec>
 Module xm_exec
</Extension>

<Input tcp>
 Module im_tcp
 Host 0.0.0.0
 Port 1514
 <Exec>
 if $raw_event =~ /alertcondition/
 {
 exec_async("/bin/sh", "-c", 'echo "' + $Hostname +
 '\n\nRawEvent:\n' + $raw_event +
 '"|/usr/bin/mail -a "Content-Type: text/plain; charset=UTF-8" -s "ALERT" ' +
 'user@domain.com');
 }
 </Exec>
</Input>

<Output file>
 Module om_file
 File "/var/log/messages"
</Output>

<Route tcp_to_file>
 Path tcp => file
</Route>

For another example, see File Rotation Based on Size.

File Operations (xm_fileop)

This module provides functions and procedures to manipulate files.
Coupled with a Schedule block, this module
allows various log rotation and retention policies to be implemented,
including:

	
log file retention based on file size,

	
log file retention based on file age, and

	
cyclic log file rotation and retention.

	

	
Rotating, renaming, or removing the file written by
 om_file is also supported with the help of the
 om_file reopen() procedure.

Configuration

The xm_fileop module accepts only the common
module directives.

Functions

The following functions are exported by xm_fileop.

	boolean dir_exists(string path)
	

Return TRUE if path exists and is a directory. On error undef is
returned and an error is logged.

	string dir_temp_get()
	

Return the name of a directory suitable as a temporary storage
location.

	string file_basename(string file)
	

Strip the directory name from the full file path. For example,
basename('/var/log/app.log') will return app.log.

	datetime file_ctime(string file)
	

Return the creation or inode-changed time of file. On error undef is
returned and an error is logged.

	string file_dirname(string file)
	

Return the directory name of the full file path. For example,
basename('/var/log/app.log') will return /var/log. Returns an
empty string if file does not contain any directory separators.

	boolean file_exists(string file)
	

Return TRUE if file exists and is a regular file.

	integer file_inode(string file)
	

Return the inode number of file. On error undef is returned and an
error is logged.

	datetime file_mtime(string file)
	

Return the last modification time of file. On error undef is
returned and an error is logged.

	string file_read(string file)
	

Return the contents of file as a string value. On error undef is
returned and an error is logged.

	integer file_size(string file)
	

Return the size of file, in bytes. On error undef is returned and an
error is logged.

	string file_type(string file)
	

Return the type of file. The following string values can be
returned: FILE, DIR, CHAR, BLOCK, PIPE, LINK, SOCKET, and UNKNOWN. On
error undef is returned and an error is logged.

Procedures

The following procedures are exported by xm_fileop.

	dir_make(string path);
	

Create a directory recursively (like mkdir -p). It succeeds if the
directory already exists. An error is logged if the operation fails.

	dir_remove(string file);
	

Remove the directory from the filesystem.

	file_append(string src, string dst);
	

Append the contents of the file src to dst. The dst file will be
created if it does not exist. An error is logged if the operation
fails.

	file_chmod(string file, integer mode);
	

Change the permissions of file. This function is only implemented on
POSIX systems where chmod() is available in the underlying operating
system. An error is logged if the operation fails.

	file_chown(string file, integer uid, integer gid);
	

Change the ownership of file. This function is only implemented on
POSIX systems where chown() is available in the underlying operating
system. An error is logged if the operation fails.

	file_chown(string file, string user, string group);
	

Change the ownership of file. This function is only implemented on
POSIX systems where chown() is available in the underlying operating
system. An error is logged if the operation fails.

	file_copy(string src, string dst);
	

Copy the file src to dst. If file dst already exists, its
contents will be overwritten. An error is logged if the operation
fails.

	file_cycle(string file);
	

Do a cyclic rotation on file. The file will be moved to
"file.1". If "file.1" already exists it will be moved to
"file.2", and so on. This procedure will reopen the LogFile if it is
cycled. An error is logged if the operation fails.

	file_cycle(string file, integer max);
	

Do a cyclic rotation on file. The file will be moved to
"file.1". If "file.1" already exists it will be moved to
"file.2", and so on. The max argument specifies the maximum number
of files to keep. For example, if max is 5, "file.6" will be
deleted. This procedure will reopen the LogFile if it is cycled. An
error is logged if the operation fails.

	file_link(string src, string dst);
	

Create a hardlink from src to dst. An error is logged if the
operation fails.

	file_remove(string file);
	

Remove file. It is possible to specify a wildcard in the filename
(but not in the path). The backslash (\) must be escaped if used as
the directory separator with wildcards (for example,
C:\\test*.log). This procedure will reopen the LogFile if it is
removed. An error is logged if the operation fails.

	file_remove(string file, datetime older);
	

Remove file if its creation time is older than the value specified
in older. It is possible to specify a wildcard in the filename (but
not in the path). The backslash (\) must be escaped if used as the
directory separator with wildcards (for example,
C:\\test*.log). This procedure will reopen the LogFile if it is
removed. An error is logged if the operation fails.

	file_rename(string old, string new);
	

Rename the file old to new. If the file new exists, it will be
overwritten. Moving files or directories across devices may not be
possible. This procedure will reopen the LogFile if it is renamed. An
error is logged if the operation fails.

	file_touch(string file);
	

Update the last modification time of file or create the file if it
does not exist. An error is logged if the operation fails.

	file_truncate(string file);
	

Truncate file to zero length. If the file does not exist, it will
be created. An error is logged if the operation fails.

	file_truncate(string file, integer offset);
	

Truncate file to the size specified in offset. If the file does
not exist, it will be created. An error is logged if the operation
fails.

	file_write(string file, string value);
	

Write value into file. The file will be created if it does not
exist. An error is logged if the operation fails.

Examples

Example 52. Rotation of the Internal LogFile

In this example, the internal log file is rotated based on time and
size.

nxlog.conf

#define LOGFILE C:\Program Files (x86)\nxlog\data\nxlog.log
define LOGFILE /var/log/nxlog/nxlog.log

<Extension fileop>
 Module xm_fileop

 # Check the log file size every hour and rotate if larger than 1 MB
 <Schedule>
 Every 1 hour
 Exec if (file_size('%LOGFILE%') >= 1M) file_cycle('%LOGFILE%', 2);
 </Schedule>

 # Rotate log file every week on Sunday at midnight
 <Schedule>
 When @weekly
 Exec file_cycle('%LOGFILE%', 2);
 </Schedule>
</Extension>

GELF (xm_gelf)

This module provides an output writer function which can be used to
generate output in Graylog Extended Log Format (GELF) for
Graylog2 or GELF compliant tools.

Unlike Syslog format (with Snare Agent, for example), the GELF format
contains structured data in JSON so that the fields are available for
analysis. This is especially convenient with sources such as the
Windows EventLog which already generate logs in a structured format.

The xm_gelf module provides the following output writer functions:

	OutputType GELF_TCP
	
This output writer generates GELF for use with
TCP (use with the om_tcp output module).

	OutputType GELF_UDP
	
This output writer generates GELF for use with
UDP (use with the om_udp output module).

	OutputType GELF
	
This type is equivalent to GELF_UDP.

The GELF output
generated by this module includes all fields, except for the
$raw_event field and any field having a leading dot (.) or
underscore (_).

Configure NXLog to output GELF formatted data by following
these steps:

	
Load the xm_gelf module:

<Extension _gelf>
 Module xm_gelf
</Extension>

	
Set the OutputType to GELF_UDP in the
om_udp output module:

<Output out_udp>
 Module om_udp
 Host 127.0.0.1
 Port 12201
 OutputType GELF_UDP
</Output>

Or, for om_tcp, use GELF_TCP:

<Output out_tcp>
 Module om_tcp
 Host 127.0.0.1
 Port 12201
 OutputType GELF_TCP
</Output>

Configuration

The xm_gelf module accepts the following directives in addition to the
common module directives.

	ShortMessageLength
	
This optional directive can be used to specify
the length of the short_message field. This defaults to 64 if the
directive is not explicitly specified. If the field short_message
or ShortMessage is present, it will not be truncated.

	UseNullDelimiter
	
If this optional boolean directive is TRUE,
GELF_TCP will use the NUL delimiter. If this directive is FALSE,
it will use the newline delimiter. The default is TRUE.

Examples

Example 53. Sending Windows EventLog to Graylog2 in GELF

The following configuration reads the Windows EventLog and sends it to
a Graylog2 server in GELF format.

nxlog.conf

<Extension gelf>
 Module xm_gelf
</Extension>

<Input eventlog>
 # Use 'im_mseventlog' for Windows XP, 2000 and 2003
 Module im_msvistalog
 # Uncomment the following to collect specific event logs only
 #Query <QueryList>\
 # <Query Id="0">\
 # <Select Path="Application">*</Select>\
 # <Select Path="System">*</Select>\
 # <Select Path="Security">*</Select>\
 # </Query>\
 # </QueryList>
</Input>

<Output udp>
 Module om_udp
 Host 192.168.1.1
 Port 12201
 OutputType GELF
</Output>

<Route eventlog_to_udp>
 Path eventlog => udp
</Route>

Example 54. Forwarding Custom Log Files to Graylog2 in GELF

In this example, custom application logs are collected and sent out in
GELF, with custom fields set to make the data more useful for the
receiver.

nxlog.conf

<Extension gelf>
 Module xm_gelf
</Extension>

<Input file>
 Module im_file
 File "/var/log/app*.log"

 <Exec>
 # Set the $EventTime field usually found in the logs by
 # extracting it with a regexp. If this is not set, the current
 # system time will be used which might be a little off.
 if $raw_event =~ /(\d\d\d\d\-\d\d-\d\d \d\d:\d\d:\d\d)/
 $EventTime = parsedate($1);

 # Explicitly set the Hostname. This defaults to the system's
 # hostname if unset.
 $Hostname = 'myhost';

 # Now set the severity level to something custom. This defaults
 # to 'INFO' if unset. We can use the following numeric values
 # here which are the standard Syslog values: ALERT: 1, CRITICAL:
 # 2, ERROR: 3, WARNING: 4, NOTICE: 5, INFO: 6, DEBUG: 7
 if $raw_event =~ /ERROR/ $SyslogSeverityValue = 3;
 else $SyslogSeverityValue = 6;

 # Set a field to contain the name of the source file
 $FileName = file_name();

 # To set a custom message, use the $Message field. The
 # $raw_event field is used if $Message is unset.
 if $raw_event =~ /something important/
 $Message = 'IMPORTANT!! ' + $raw_event;
 </Exec>
</Input>

<Output udp>
 Module om_udp
 Host 192.168.1.1
 Port 12201
 OutputType GELF
</Output>

<Route file_to_gelf>
 Path file => udp
</Route>

Example 55. Parsing a CSV File and Sending it to Graylog2 in GELF

With this configuration, NXLog will read a CSV file containing
three fields and forward the data in GELF so that the fields will be
available on the server.

nxlog.conf

<Extension gelf>
 Module xm_gelf
</Extension>

<Extension csv>
 Module xm_csv
 Fields $name, $number, $location
 FieldTypes string, integer, string
 Delimiter ,
</Extension>

<Input file>
 Module im_file
 File "/var/log/app/csv.log"
 Exec csv->parse_csv();
</Input>

<Output udp>
 Module om_udp
 Host 192.168.1.1
 Port 12201
 OutputType GELF
</Output>

<Route csv_to_gelf>
 Path file => udp
</Route>

Grok (xm_grok)

This module supports parsing events with Grok patterns. A field is added to
the event record for each pattern semantic. For more information about Grok,
see the
Logstash
Grok filter plugin documentation.

Configuration

The xm_grok module accepts the following directives in addition to the
common module directives.

	Pattern
	
This mandatory directive specifies a directory or file containing
Grok patterns. Wildcards may be used to specify multiple directories or
files. This directive may be used more than once.

Functions

The following functions are exported by xm_grok.

	boolean match_grok(string pattern)
	

Execute the match_grok()
procedure with the specified pattern on the $raw_event field. If
the event is successfully matched, return TRUE, otherwise FALSE.

	boolean match_grok(string field, string pattern)
	

Execute the match_grok()
procedure with the specified pattern on the specified field. If
the event is successfully matched, return TRUE, otherwise FALSE.

Procedures

The following procedures are exported by xm_grok.

	match_grok(string pattern);
	

Attempt to match and parse the $raw_event field of the current event
with the specified pattern.

	match_grok(string field, string pattern);
	

Attempt to match and parse the field of the current event with the
specified pattern.

Examples

Example 56. Using Grok Patterns for Parsing

This configuration reads Syslog events from file and parses them with the
parse_syslog() procedure (this sets the
$Message field). Then the
match_grok() function is used to attempt a series
of matches on the $Message field until one is successful. If no patterns
match, an internal message is logged.

nxlog.conf

<Extension _syslog>
 Module xm_syslog
</Extension>

<Extension grok>
 Module xm_grok
 Pattern modules/extension/grok/patterns2.txt
</Extension>

<Input in>
 Module im_file
 File 'test2.log'
 <Exec>
 parse_syslog_bsd();
 if match_grok($Message, "%{SSH_AUTHFAIL_WRONGUSER}") {}
 else if match_grok($Message, "%{SSH_AUTHFAIL_WRONGCREDS}") {}
 else if match_grok($Message, "%{SSH_AUTH_SUCCESS}") {}
 else if match_grok($Message, "%{SSH_DISCONNECT}") {}
 else
 {
 log_info('Event did not match any pattern');
 }
 </Exec>
</Input>

patterns2.txt

USERNAME [a-zA-Z0-9_-]+
INT (?:[+-]?(?:[0-9]+))
BASE10NUM (?<![0-9.+-])(?>[+-]?(?:(?:[0-9]+(?:\.[0-9]+)?)|(?:\.[0-9]+)))
NUMBER (?:%{BASE10NUM})
WORD \b\w+\b
GREEDYDATA .*
IP (?<![0-9])(?:(?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2}))(?![0-9])

SSH_AUTHFAIL_WRONGUSER Failed %{WORD:ssh_authmethod} for invalid user %{USERNAME:ssh_user} from %{IP:ssh_client_ip} port %{NUMBER:ssh_client_port} (?<ssh_protocol>\w+\d+)
SSH_AUTHFAIL_WRONGCREDS Failed %{WORD:ssh_authmethod} for %{USERNAME:ssh_user} from %{IP:ssh_client_ip} port %{NUMBER:ssh_client_port} (?<ssh_protocol>\w+\d+)
SSH_AUTH_SUCCESS Accepted %{WORD:ssh_authmethod} for %{USERNAME:ssh_user} from %{IP:ssh_client_ip} port %{NUMBER:ssh_client_port} (?<ssh_protocol>\w+\d+)(?:: %{WORD:ssh_pubkey_type} %{GREEDYDATA:ssh_pubkey_fingerprint})?
SSH_DISCONNECT Received disconnect from %{IP:ssh_client_ip} port %{INT:ssh_client_port}.*?:\s+%{GREEDYDATA:ssh_disconnect_reason}

JSON (xm_json)

This module provides functions and procedures for processing data
formatted as JSON. JSON can be generated from log
data, or JSON can be parsed into
fields. Unfortunately, the JSON specification does not
define a type for datetime values so these are represented as JSON
strings. The JSON parser in xm_json can automatically detect datetime
values, so it is not necessary to explicitly use
parsedate().

Configuration

The xm_json module accepts only the common
module directives.

Functions

The following functions are exported by xm_json.

	string to_json()
	

Convert the fields to JSON and return this as a string value. The
$raw_event field and any field having a leading dot (.) or
underscore (_) will be automatically excluded.

Procedures

The following procedures are exported by xm_json.

	parse_json();
	

Parse the $raw_event field as JSON input.

	parse_json(string source);
	

Parse the given string as JSON format.

	to_json();
	

Convert the fields to JSON and put this into the $raw_event
field. The $raw_event field and any field having a leading dot (.)
or underscore (_) will be automatically excluded.

Examples

Example 57. Syslog to JSON Format Conversion

The following configuration accepts Syslog (both BSD and IETF) via TCP
and converts it to JSON.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Extension json>
 Module xm_json
</Extension>

<Input tcp>
 Module im_tcp
 Port 1514
 Host 0.0.0.0
 Exec parse_syslog(); to_json();
</Input>

<Output file>
 Module om_file
 File "/var/log/json.txt"
</Output>

<Route tcp_to_file>
 Path tcp => file
</Route>

Input Sample

<30>Sep 30 15:45:43 host44.localdomain.hu acpid: 1 client rule loaded

Output Sample

{
 "MessageSourceAddress":"127.0.0.1",
 "EventReceivedTime":"2011-03-08 14:22:41",
 "SyslogFacilityValue":1,
 "SyslogFacility":"DAEMON",
 "SyslogSeverityValue":5,
 "SyslogSeverity":"INFO",
 "SeverityValue":2,
 "Severity":"INFO",
 "Hostname":"host44.localdomain.hu",
 "EventTime":"2011-09-30 14:45:43",
 "SourceName":"acpid",
 "Message":"1 client rule loaded "
}

Example 58. Converting Windows EventLog to Syslog-Encapsulated JSON

The following configuration reads the Windows EventLog and converts it
to the BSD Syslog format, with the message part containing the fields
in JSON.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Extension json>
 Module xm_json
</Extension>

<Input eventlog>
 Module im_msvistalog
 Exec $Message = to_json(); to_syslog_bsd();
</Input>

<Output tcp>
 Module om_tcp
 Host 192.168.1.1
 Port 1514
</Output>

<Route eventlog_json_tcp>
 Path eventlog => tcp
</Route>

Output Sample

<14>Mar 8 14:40:11 WIN-OUNNPISDHIG Service_Control_Manager: {"EventTime":"2012-03-08 14:40:11","EventTimeWritten":"2012-03-08 14:40:11","Hostname":"WIN-OUNNPISDHIG","EventType":"INFO","SeverityValue":2,"Severity":"INFO","SourceName":"Service Control Manager","FileName":"System","EventID":7036,"CategoryNumber":0,"RecordNumber":6788,"Message":"The nxlog service entered the running state. ","EventReceivedTime":"2012-03-08 14:40:12"}

Key-Value Pairs (xm_kvp)

This module provides functions and procedures for processing data
formatted as key-value pairs (KVPs), also commonly called "name-value
pairs". The module can both parse and generate key-value formatted
data.

It is quite common to have a different set of keys in each log line
when accepting key-value formatted input messages. Extracting values
from such logs using regular expressions can be quite cumbersome. The
xm_kvp extension module automates this process.

Log messages containing key-value pairs typically look like one the
following:

	
key1: value1, key2: value2, key42: value42

	
key1="value 1"; key2="value 2"

	
Application=smtp, Event='Protocol Conversation', status='Client
Request', ClientRequest='HELO 1.2.3.4'

Keys are usually separated from the value using an equal sign (=) or
a colon (:); and the key-value pairs are delimited with a comma
(,), a semicolon (;), or a space. In addition, values and keys may
be quoted and may contain escaping. The module will try to guess the
format, or the format can be explicitly specified using the
configuration directives below.

	

	
It is possible to use more than one xm_kvp module instance with
 different options in order to support different KVP formats at
 the same time. For this reason, functions and procedures
 exported by the module are public and must be referenced by the
 module instance name.

Configuration

The xm_kvp module accepts the following directives in addition to the
common module directives.

	DetectNumericValues
	
If this optional boolean directive is set to TRUE,
the parse_kvp() procedure will try to
parse numeric values as integers first. The default is TRUE (numeric
values will be parsed as integers and unquoted in the output). Note that
floating-point numbers will not be handled.

	EscapeChar
	
This optional directive takes a single character (see
below) as argument. It specifies the
character used for escaping special characters. The escape character
is used to prefix the following characters: the EscapeChar itself,
the KeyQuoteChar, and the
ValueQuoteChar. If
EscapeControl is TRUE, the newline
(\n), carriage return (\r), tab (\t), and backspace (\b)
control characters are also escaped. The default escape character is
the backslash (\).

	EscapeControl
	
If this optional boolean directive is set to TRUE,
control characters are also escaped. See the
EscapeChar directive for details. The
default is TRUE (control characters are escaped). Note that this is
necessary in order to support single-line KVP field lists containing
line-breaks.

	IncludeHiddenFields
	
This boolean directive specifies that the
to_kvp() function or the
 to_kvp() procedure should inlude fields
having a leading dot (.) or underscore (_) in their names.
The default is TRUE. If IncludeHiddenFields is set to TRUE, then
generated text will contain these otherwise excluded fields.

	KeyQuoteChar
	
This optional directive takes a single character (see
below) as argument. It specifies the
quote character for enclosing key names. If this directive is not
specified, the module will accept single-quoted keys, double-quoted
keys, and unquoted keys.

	KVDelimiter
	
This optional directive takes a single character (see
below) as argument. It specifies the
delimiter character used to separate the key from the value. If this
directive is not set and the parse_kvp()
procedure is used, the module will try to guess the delimiter from
the following: the colon (:) or the equal-sign (=).

	QuoteMethod
	
This directive can be used to specify the quote method
used for the values by to_kvp().

	All
	
The values will be always quoted. This is the default.

	Delimiter
	
The value will be only enclosed in quotes if it contains the
delimiter character.

	None
	
The values will not be quoted.

	KVPDelimiter
	
This optional directive takes a single character (see
below) as argument. It specifies the
delimiter character used to separate the key-value pairs. If this
directive is not set and the parse_kvp()
procedure is used, the module will try to guess the delimiter from
the following: the comma (,), the semicolon (;), or the space.

	ValueQuoteChar
	
This optional directive takes a single character (see
below) as argument. It specifies the
quote character for enclosing key values. If this directive is not
specified, the module will accept single-quoted values,
double-quoted values, and unquoted values. Normally, quotation is
used when the value contains a space or the
KVDelimiter character.

Specifying Quote, Escape, and Delimiter Characters

The KeyQuoteChar,
ValueQuoteChar,
EscapeChar,
KVDelimiter, and
KVPDelimiter directives can be
specified in several ways.

	Unquoted single character
	
Any printable character can be specified
as an unquoted character, except for the backslash (\):

Delimiter ;

	Control characters
	
The following non-printable characters can be
specified with escape sequences:

	\a
	
audible alert (bell)

	\b
	
backspace

	\t
	
horizontal tab

	\n
	
newline

	\v
	
vertical tab

	\f
	
formfeed

	\r
	
carriage return

For example, to use TAB delimiting:

Delimiter \t

	A character in single quotes
	
The configuration parser strips
whitespace, so it is not possible to define a space as the delimiter
unless it is enclosed within quotes:

Delimiter ' '

Printable characters can also be enclosed:

Delimiter ';'

The backslash can be specified when enclosed within quotes:

Delimiter '\'

	A character in double quotes
	
Double quotes can be used like single
quotes:

Delimiter " "

The backslash can be specified when enclosed within double quotes:

Delimiter "\"

	A hexadecimal ASCII code
	
Hexadecimal ASCII character codes can also
be used by prepending 0x. For example, the space can be specified
as:

Delimiter 0x20

This is equivalent to:

Delimiter " "

Functions

The following functions are exported by xm_kvp.

	string to_kvp()
	

Convert the internal fields to a single key-value pair
 formatted string.

Procedures

The following procedures are exported by xm_kvp.

	parse_kvp();
	

Parse the $raw_event field as key-value pairs and populate
 the internal fields using the key names.

	parse_kvp(string source);
	

Parse the given string key-value pairs and populate the
 internal fields using the key names.

	parse_kvp(string source, string prefix);
	

Parse the given string key-value pairs and populate the
 internal fields using the key names prefixed with the value of the second parameter.

	reset_kvp();
	

Reset the KVP parser so that the autodetected
 KeyQuoteChar,
 ValueQuoteChar,
 KVDelimiter, and
 KVPDelimiter
 characters can be detected again.

	to_kvp();
	

Format the internal fields as key-value pairs and put this
into the $raw_event field.

Note that directive IncludeHiddenFields
has an effect on fields included in the output.

Examples

The following examples illustrate various scenarios for parsing KVPs,
whether embedded, encapsulated (in Syslog, for example), or alone. In
each case, the logs are converted from KVP input files to JSON output
files, though obviously there are many other possibilities.

Example 59. Simple KVP Parsing

The following two lines of input are in a simple KVP format where each
line consists of various keys with values assigned to them.

Input Sample

Name=John, Age=42, Weight=84, Height=142
Name=Mike, Weight=64, Age=24, Pet=dog, Height=172

This input can be parsed with the following configuration. The parsed
fields can be used in NXLog expressions: a new field named
$Overweight is added and set to TRUE if the conditions
are met. Finally a few automatically added fields are removed, and the
log is then converted to JSON.

nxlog.conf

<Extension kvp>
 Module xm_kvp
 KVPDelimiter ,
 KVDelimiter =
 EscapeChar \\
</Extension>

<Extension json>
 Module xm_json
</Extension>

<Input filein>
 Module im_file
 File "modules/extension/kvp/xm_kvp5.in"
 <Exec>
 if $raw_event =~ /^#/ drop();
 else
 {
 kvp->parse_kvp();
 delete($EventReceivedTime);
 delete($SourceModuleName);
 delete($SourceModuleType);
 if (integer($Weight) > integer($Height) - 100) $Overweight = TRUE;
 to_json();
 }
 </Exec>
</Input>

<Output fileout>
 Module om_file
 File 'tmp/output'
</Output>

<Route parse_kvp>
 Path filein => fileout
</Route>

Output Sample

{"Name":"John","Age":42,"Weight":84,"Height":142,"Overweight":true}
{"Name":"Mike","Weight":64,"Age":24,"Pet":"dog","Height":172}

Example 60. Parsing KVPs in Cisco ACS Syslog

The following lines are from a Cisco ACS source.

Input Sample

<38>2010-10-12 21:01:29 10.0.1.1 CisACS_02_FailedAuth 1k1fg93nk 1 0 Message-Type=Authen failed,User-Name=John,NAS-IP-Address=10.0.1.2,AAA Server=acs01
<38>2010-10-12 21:01:31 10.0.1.1 CisACS_02_FailedAuth 2k1fg63nk 1 0 Message-Type=Authen failed,User-Name=Foo,NAS-IP-Address=10.0.1.2,AAA Server=acs01

These logs are in Syslog format with a set of values present in each
record and an additional set of KVPs. The following configuration can
be used to process this and convert it to JSON.

nxlog.conf

<Extension json>
 Module xm_json
</Extension>

<Extension syslog>
 Module xm_syslog
</Extension>

<Extension kvp>
 Module xm_kvp
 KVDelimiter =
 KVPDelimiter ,
</Extension>

<Input cisco>
 Module im_file
 File "modules/extension/kvp/cisco_acs.in"
 <Exec>
 parse_syslog_bsd();
 if ($Message =~ /^CisACS_(\d\d)_(\S+) (\S+) (\d+) (\d+) (.*)$/)
 {
 $ACSCategoryNumber = $1;
 $ACSCategoryName = $2;
 $ACSMessageId = $3;
 $ACSTotalSegments = $4;
 $ACSSegmentNumber = $5;
 $Message = $6;
 kvp->parse_kvp($Message);
 }
 else log_warning("does not match: " + to_json());
 </Exec>
</Input>

<Output file>
 Module om_file
 File "tmp/output"
 Exec delete($EventReceivedTime);
 Exec to_json();
</Output>

<Route cisco_to_file>
 Path cisco => file
</Route>

Output Sample

{"SourceModuleName":"cisco","SourceModuleType":"im_file","SyslogFacilityValue":4,"SyslogFacility":"AUTH","SyslogSeverityValue":6,"SyslogSeverity":"INFO","SeverityValue":2,"Severity":"INFO","Hostname":"10.0.1.1","EventTime":"2010-10-12 21:01:29","Message":"Message-Type=Authen failed,User-Name=John,NAS-IP-Address=10.0.1.2,AAA Server=acs01","ACSCategoryNumber":"02","ACSCategoryName":"FailedAuth","ACSMessageId":"1k1fg93nk","ACSTotalSegments":"1","ACSSegmentNumber":"0","Message-Type":"Authen failed","User-Name":"John","NAS-IP-Address":"10.0.1.2","AAA Server":"acs01"}
{"SourceModuleName":"cisco","SourceModuleType":"im_file","SyslogFacilityValue":4,"SyslogFacility":"AUTH","SyslogSeverityValue":6,"SyslogSeverity":"INFO","SeverityValue":2,"Severity":"INFO","Hostname":"10.0.1.1","EventTime":"2010-10-12 21:01:31","Message":"Message-Type=Authen failed,User-Name=Foo,NAS-IP-Address=10.0.1.2,AAA Server=acs01","ACSCategoryNumber":"02","ACSCategoryName":"FailedAuth","ACSMessageId":"2k1fg63nk","ACSTotalSegments":"1","ACSSegmentNumber":"0","Message-Type":"Authen failed","User-Name":"Foo","NAS-IP-Address":"10.0.1.2","AAA Server":"acs01"}

Example 61. Parsing KVPs in Sidewinder Logs

The following line is from a Sidewinder log source.

Input Sample

date="May 5 14:34:40 2009 MDT",fac=f_mail_filter,area=a_kmvfilter,type=t_mimevirus_reject,pri=p_major,pid=10174,ruid=0,euid=0,pgid=10174,logid=0,cmd=kmvfilter,domain=MMF1,edomain=MMF1,message_id=(null),srcip=66.74.184.9,mail_sender=<habuzeid6@…>,virus_name=W32/Netsky.c@MM!zip,reason="Message scan detected a Virus in msg Unknown, message being Discarded, and not quarantined"

This can be parsed and converted to JSON with the following
configuration.

nxlog.conf

<Extension kvp>
 Module xm_kvp
 KVPDelimiter ,
 KVDelimiter =
 EscapeChar \\
 ValueQuoteChar "
</Extension>

<Extension json>
 Module xm_json
</Extension>

<Input sidewinder>
 Module im_file
 File "modules/extension/kvp/sidewinder.in"
 Exec kvp->parse_kvp(); delete($EventReceivedTime); to_json();
</Input>

<Output file>
 Module om_file
 File 'tmp/output'
</Output>

<Route sidewinder_to_file>
 Path sidewinder => file
</Route>

Output Sample

{"SourceModuleName":"sidewinder","SourceModuleType":"im_file","date":"May 5 14:34:40 2009 MDT","fac":"f_mail_filter","area":"a_kmvfilter","type":"t_mimevirus_reject","pri":"p_major","pid":10174,"ruid":0,"euid":0,"pgid":10174,"logid":0,"cmd":"kmvfilter","domain":"MMF1","edomain":"MMF1","message_id":"(null)","srcip":"66.74.184.9","mail_sender":"<habuzeid6@…>","virus_name":"W32/Netsky.c@MM!zip","reason":"Message scan detected a Virus in msg Unknown, message being Discarded, and not quarantined"}

Example 62. Parsing URL Request Parameters in Apache Access Logs

URLs in HTTP requests frequently contain URL parameters which are a
special kind of key-value pairs delimited by the ampersand (&). Here
is an example of two HTTP requests logged by the Apache web server in
the Combined Log Format.

Input Sample

192.168.1.1 - foo [11/Jun/2013:15:44:34 +0200] "GET /do?action=view&obj_id=2 HTTP/1.1" 200 1514 "https://localhost" "Mozilla/5.0 (X11; Linux x86_64; rv:17.0) Gecko/17.0 Firefox/17.0"
192.168.1.1 - - [11/Jun/2013:15:44:44 +0200] "GET /do?action=delete&obj_id=42 HTTP/1.1" 401 788 "https://localhost" "Mozilla/5.0 (X11; Linux x86_64; rv:17.0) Gecko/17.0 Firefox/17.0"

The following configuration file parses the access log and extracts
all the fields. The request parameters are extracted into the
$HTTPParams field using a regular expression, and then this field is
further parsed using the KVP parser. At the end of the processing all
fields are converted to KVP format using the
to_kvp() procedure of the kvp2 instance.

nxlog.conf

<Extension kvp>
 Module xm_kvp
 KVPDelimiter &
 KVDelimiter =
</Extension>

<Extension kvp2>
 Module xm_kvp
 KVPDelimiter ;
 KVDelimiter =
 #QuoteMethod None
</Extension>

<Input apache>
 Module im_file
 File "modules/extension/kvp/apache_url.in"
 <Exec>
 if $raw_event =~ /(?x)^(\S+)\ (\S+)\ (\S+)\ \[([^\]]+)\]\ \"(\S+)\ (.+)
 \ HTTP.\d\.\d\"\ (\d+)\ (\d+)\ \"([^\"]+)\"\ \"([^\"]+)\"/
 {
 $Hostname = $1;
 if $3 != '-' $AccountName = $3;
 $EventTime = parsedate($4);
 $HTTPMethod = $5;
 $HTTPURL = $6;
 $HTTPResponseStatus = $7;
 $FileSize = $8;
 $HTTPReferer = $9;
 $HTTPUserAgent = $10;
 if $HTTPURL =~ /\?(.+)/ { $HTTPParams = $1; }
 kvp->parse_kvp($HTTPParams);
 delete($EventReceivedTime);
 kvp2->to_kvp();
 }
 </Exec>
</Input>

<Output file>
 Module om_file
 File 'tmp/output'
</Output>

<Route apache_to_file>
 Path apache => file
</Route>

The two request parameters action and obj_id then appear at the end
of the KVP formatted lines.

Output Sample

SourceModuleName=apache;SourceModuleType=im_file;Hostname=192.168.1.1;AccountName=foo;EventTime=2013-06-11 15:44:34;HTTPMethod=GET;HTTPURL=/do?action=view&obj_id=2;HTTPResponseStatus=200;FileSize=1514;HTTPReferer=https://localhost;HTTPUserAgent='Mozilla/5.0 (X11; Linux x86_64; rv:17.0) Gecko/17.0 Firefox/17.0';HTTPParams=action=view&obj_id=2;action=view;obj_id=2;
SourceModuleName=apache;SourceModuleType=im_file;Hostname=192.168.1.1;EventTime=2013-06-11 15:44:44;HTTPMethod=GET;HTTPURL=/do?action=delete&obj_id=42;HTTPResponseStatus=401;FileSize=788;HTTPReferer=https://localhost;HTTPUserAgent='Mozilla/5.0 (X11; Linux x86_64; rv:17.0) Gecko/17.0 Firefox/17.0';HTTPParams=action=delete&obj_id=42;action=delete;obj_id=42;

	

	
URL escaping is not handled.

Multi-Line Parser (xm_multiline)

This module can be used for parsing log messages that span multiple lines. All
lines in an event are joined to form a single NXLog event record,
which can be further processed as required. Each multi-line event is detected
through some combination of header lines, footer lines, and fixed line counts,
as configured. The name of the xm_multiline module instance is specified by
the input module’s InputType directive.

The module maintains a separate context for each input source, allowing
multi-line messages to be processed correctly even when coming from multiple
sources (specifically, multiple files or multiple network connections).

	

	
UDP is treated as a single source and all logs are processed under
 the same context. It is therefore not recommended to use this module
 with im_udp if messages will be received by multiple UDP
 senders (such as Syslog).

Configuration

The xm_multiline module accepts the following directives in addition
to the common module directives. One of
FixedLineCount and
HeaderLine must be specified.

	FixedLineCount
	
This directive takes a positive integer number
defining the number of lines to concatenate. This is useful
when receiving log messages spanning a fixed number of lines. When this number
is defined, the module knows where the event message ends and will
not hold a message in the buffers until the next message arrives.

	HeaderLine
	
This directive takes a string or
a regular expression literal. This will be matched
against each line. When the match is successful, the successive
lines are appended until the next header line is read. This
directive is mandatory unless
FixedLineCount is used.

	

	
Until a new message arrives with its associated header, the
 previous message is stored in the buffers because the module
 does not know where the message ends. The im_file
 module will forcibly flush this buffer after the configured
 PollInterval timeout. If this
 behavior is unacceptable,
 use an end marker with EndLine
 or switch to an encapsulation method (such as JSON).

	EndLine
	
This is similar to the
HeaderLine directive. This
optional directive also takes a string or a
regular expression literal to be matched against
each line. When the match is successful the message is considered
complete.

	Exec
	
This directive is almost identical to the behavior of the
Exec directive used by the other modules with
the following differences:

	
each line is passed in $raw_event as it is read, and the line
terminator in included; and

	
other fields cannot be used, and captured strings can not be stored
as separate fields.

This is mostly useful for rewriting lines or filtering out certain
lines with the drop() procedure.

Examples

Example 63. Parsing multi-line XML logs and converting to JSON

XML is commonly formatted as indented multi-line to make it more
readable. In the following configuration file the
HeaderLine and
EndLine directives are used to parse
the events. The events are then converted to JSON after some timestamp
normalization.

nxlog.conf

<Extension multiline>
 Module xm_multiline
 HeaderLine /^<event>/
 EndLine /^</event>/
</Extension>

<Extension xmlparser>
 Module xm_xml
</Extension>

<Extension json>
 Module xm_json
</Extension>

<Input filein>
 Module im_file
 File "modules/extension/multiline/xm_multiline5.in"
 InputType multiline
 <Exec>
 # Discard everything that doesn't seem to be an xml event
 if $raw_event !~ /^<event>/ drop();

 # Parse the xml event
 parse_xml();

 # Rewrite some fields
 $EventTime = parsedate($timestamp);
 delete($timestamp);
 delete($EventReceivedTime);

 # Convert to JSON
 to_json();
 </Exec>
</Input>

<Output fileout>
 Module om_file
 File 'tmp/output'
</Output>

<Route parse_xml>
 Path filein => fileout
</Route>

Input Sample

<?xml version="1.0" encoding="UTF-8">
<event>
 <timestamp>2012-11-23 23:00:00</timestamp>
 <severity>ERROR</severity>
 <message>
 Something bad happened.
 Please check the system.
 </message>
</event>
<event>
 <timestamp>2012-11-23 23:00:12</timestamp>
 <severity>INFO</severity>
 <message>
 System state is now back to normal.
 </message>
</event>

Output Sample

{"SourceModuleName":"filein","SourceModuleType":"im_file","severity":"ERROR","message":"\n Something bad happened.\n Please check the system.\n ","EventTime":"2012-11-23 23:00:00"}
{"SourceModuleName":"filein","SourceModuleType":"im_file","severity":"INFO","message":"\n System state is now back to normal.\n ","EventTime":"2012-11-23 23:00:12"}

Example 64. Parsing DICOM Logs

Each log message has a header (TIMESTAMP INTEGER SEVERITY) which is
used as the message boundary. A regular expression is defined for this
with the HeaderLine directive. Each
log message is prepended with an additional line containing dashes and
is written to a file.

nxlog.conf

<Extension dicom_multi>
 Module xm_multiline
 HeaderLine /^\d\d\d\d-\d\d-\d\d\d\d:\d\d:\d\d\.\d+\s+\d+\s+\S+\s+/
</Extension>

<Input filein>
 Module im_file
 File "modules/extension/multiline/xm_multiline4.in"
 InputType dicom_multi
</Input>

<Output fileout>
 Module om_file
 File 'tmp/output'
 Exec $raw_event = "--------------------------------------\n" + $raw_event;
</Output>

<Route parse_dicom>
 Path filein => fileout
</Route>

Input Sample

2011-12-1512:22:51.000000 4296 INFO Association Request Parameters:
Our Implementation Class UID: 2.16.124.113543.6021.2
Our Implementation Version Name: RZDCX_2_0_1_8
Their Implementation Class UID:
Their Implementation Version Name:
Application Context Name: 1.2.840.10008.3.1.1.1
Requested Extended Negotiation: none
Accepted Extended Negotiation: none
2011-12-1512:22:51.000000 4296 DEBUG Constructing Associate RQ PDU
2011-12-1512:22:51.000000 4296 DEBUG WriteToConnection, length: 310, bytes written: 310, loop no: 1
2011-12-1512:22:51.015000 4296 DEBUG PDU Type: Associate Accept, PDU Length: 216 + 6 bytes PDU header
 02 00 00 00 00 d8 00 01 00 00 50 41 43 53 20 20
 20 20 20 20 20 20 20 20 20 20 52 5a 44 43 58 20
 20 20 20 20 20 20 20 20 20 20 00 00 00 00 00 00
2011-12-1512:22:51.031000 4296 DEBUG DIMSE sendDcmDataset: sending 146 bytes

Output Sample

2011-12-1512:22:51.000000 4296 INFO Association Request Parameters:
Our Implementation Class UID: 2.16.124.113543.6021.2
Our Implementation Version Name: RZDCX_2_0_1_8
Their Implementation Class UID:
Their Implementation Version Name:
Application Context Name: 1.2.840.10008.3.1.1.1
Requested Extended Negotiation: none
Accepted Extended Negotiation: none

2011-12-1512:22:51.000000 4296 DEBUG Constructing Associate RQ PDU

2011-12-1512:22:51.000000 4296 DEBUG WriteToConnection, length: 310, bytes written: 310, loop no: 1

2011-12-1512:22:51.015000 4296 DEBUG PDU Type: Associate Accept, PDU Length: 216 + 6 bytes PDU header
 02 00 00 00 00 d8 00 01 00 00 50 41 43 53 20 20
 20 20 20 20 20 20 20 20 20 20 52 5a 44 43 58 20
 20 20 20 20 20 20 20 20 20 20 00 00 00 00 00 00

2011-12-1512:22:51.031000 4296 DEBUG DIMSE sendDcmDataset: sending 146 bytes

Example 65. Multi-line messages with a fixed string header

The following configuration will process messages having a fixed
string header containing dashes. Each event is then prepended with a
hash mark (#) and written to a file.

nxlog.conf

<Extension multiline>
 Module xm_multiline
 HeaderLine "---------------"
</Extension>

<Input filein>
 Module im_file
 File "modules/extension/multiline/xm_multiline1.in"
 InputType multiline
 Exec $raw_event = "#" + $raw_event;
</Input>

<Output fileout>
 Module om_file
 File 'tmp/output'
</Output>

<Route parse_multiline>
 Path filein => fileout
</Route>

Input Sample

1

1
2

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
ccccccccccccccccccccccccccccccccccccc
dddd

Output Sample

#---------------
1
#---------------
1
2
#---------------
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
ccccccccccccccccccccccccccccccccccccc
dddd
#---------------

Example 66. Multi-line messages with fixed line count

The following configuration will process messages having a fixed line
count of four. Lines containing only whitespace are ignored and
removed. Each event is then prepended with a hash mark (#) and
written to a file.

nxlog.conf

<Extension multiline>
 Module xm_multiline
 FixedLineCount 4
 Exec if $raw_event =~ /^\s*$/ drop();
</Extension>

<Input filein>
 Module im_file
 File "modules/extension/multiline/xm_multiline2.in"
 InputType multiline
</Input>

<Output fileout>
 Module om_file
 File 'tmp/output'
 Exec $raw_event = "#" + $raw_event;
</Output>

<Route parse_multiline>
 Path filein => fileout
</Route>

Input Sample

1
2
3
4
1asd

2asdassad
3ewrwerew
4xcbccvbc

1dsfsdfsd
2sfsdfsdrewrwe

3sdfsdfsew
4werwerwrwe

Output Sample

#1
2
3
4
#1asd
2asdassad
3ewrwerew
4xcbccvbc
#1dsfsdfsd
2sfsdfsdrewrwe
3sdfsdfsew
4werwerwrwe

Example 67. Multi-line messages with a Syslog header

Often, multi-line messages are logged over Syslog and each line is
processed as an event, with its own Syslog header. It is commonly
necessary to merge these back into a single event message.

Input Sample

Nov 21 11:40:27 hostname app[26459]: Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
Nov 21 11:40:27 hostname app[26459]: eth2 1500 0 16936814 0 0 0 30486067 0 8 0 BMRU
Nov 21 11:40:27 hostname app[26459]: lo 16436 0 277217234 0 0 0 277217234 0 0 0 LRU
Nov 21 11:40:27 hostname app[26459]: tun0 1500 0 316943 0 0 0 368642 0 0 0 MOPRU
Nov 21 11:40:28 hostname app[26459]: Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
Nov 21 11:40:28 hostname app[26459]: eth2 1500 0 16945117 0 0 0 30493583 0 8 0 BMRU
Nov 21 11:40:28 hostname app[26459]: lo 16436 0 277217234 0 0 0 277217234 0 0 0 LRU
Nov 21 11:40:28 hostname app[26459]: tun0 1500 0 316943 0 0 0 368642 0 0 0 MOPRU
Nov 21 11:40:29 hostname app[26459]: Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
Nov 21 11:40:29 hostname app[26459]: eth2 1500 0 16945270 0 0 0 30493735 0 8 0 BMRU
Nov 21 11:40:29 hostname app[26459]: lo 16436 0 277217234 0 0 0 277217234 0 0 0 LRU
Nov 21 11:40:29 hostname app[26459]: tun0 1500 0 316943 0 0 0 368642 0 0 0 MOPRU

The following configuration strips the Syslog header from the netstat
output stored in the traditional Syslog formatted file, and each
message is then printed again with a line of dashes used as a
separator.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Extension netstat>
 Module xm_multiline
 FixedLineCount 4
 <Exec>
 parse_syslog_bsd();
 $raw_event = $Message + "\n";
 </Exec>
</Extension>

<Input filein>
 Module im_file
 File "modules/extension/multiline/xm_multiline3.in"
 InputType netstat
</Input>

<Output fileout>
 Module om_file
 File 'tmp/output'
 <Exec>
 $raw_event = "---" +
 "-----------------------------\n" + $raw_event;
 </Exec>
</Output>

<Route parse_multiline>
 Path filein => fileout
</Route>

Output Sample

--
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth2 1500 0 16936814 0 0 0 30486067 0 8 0 BMRU
lo 16436 0 277217234 0 0 0 277217234 0 0 0 LRU
tun0 1500 0 316943 0 0 0 368642 0 0 0 MOPRU
--
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth2 1500 0 16945117 0 0 0 30493583 0 8 0 BMRU
lo 16436 0 277217234 0 0 0 277217234 0 0 0 LRU
tun0 1500 0 316943 0 0 0 368642 0 0 0 MOPRU
--
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth2 1500 0 16945270 0 0 0 30493735 0 8 0 BMRU
lo 16436 0 277217234 0 0 0 277217234 0 0 0 LRU
tun0 1500 0 316943 0 0 0 368642 0 0 0 MOPRU

Perl (xm_perl)

The Perl programming language is widely used for log
processing and comes with a broad set of modules bundled or available
from CPAN. Code can be written more quickly in Perl
than in C, and code execution is safer because exceptions (croak/die)
are handled properly and will only result in an unfinished attempt at
log processing rather than taking down the whole NXLog
process.

While the NXLog language is already a powerful
framework, it is not intended to be a fully featured programming
language and does not provide lists, arrays, hashes, and other features
available in many high-level languages. With this module, Perl can be
used to process event data via a built-in Perl interpreter. See also
the im_perl and om_perl modules.

The Perl interpreter is only loaded if the module is declared in the
configuration. The module will parse the file specified in the
PerlCode directive when NXLog
starts the module. This file should contain one or more methods
which can be called from the Exec directive of
any module that will use Perl for log processing. See the
example below.

	

	
Perl code defined via this module must not be called from
 the im_perl and om_perl modules as
 that would involve two Perl interpreters and will likely
 result in a crash.

	

	

To use the xm_perl module on Windows, a separate Perl environment must be
installed. Currently, the only environment supported is a specific version of
Strawberry Perl, 5.28.2.1. Newer
versions will not work. See the
release notes.
To download the MSI installer for this version (100 MB),
click here.

To access event data, the Log::Nxlog module must be included, which provides
the following methods.

	log_debug(msg)
	
Send the message msg to the internal logger on
DEBUG log level. This method does the same as the
log_debug() procedure in NXLog.

	log_info(msg)
	
Send the message msg to the internal logger on INFO
log level. This method does the same as the
log_info() procedure in NXLog.

	log_warning(msg)
	
Send the message msg to the internal logger on
WARNING log level. This method does the same as the
log_warning() procedure in NXLog.

	log_error(msg)
	
Send the message msg to the internal logger on
ERROR log level. This method does the same as the
log_error() procedure in NXLog.

	delete_field(event, key)
	
Delete the value associated with the field
named key.

	field_names(event)
	
Return a list of the field names contained in the
event data. This method can be used to iterate over all of the
fields.

	field_type(event, key)
	
Return a string representing the type of the
value associated with the field named key.

	get_field(event, key)
	
Retrieve the value associated with the field
named key. This method returns a scalar value if the key exists
and the value is defined, otherwise it returns undef.

	set_field_boolean(event, key, value)
	
Set the boolean value in the
field named key.

	set_field_integer(event, key, value)
	
Set the integer value in the
field named key.

	set_field_string(event, key, value)
	
Set the string value in the
field named key.

For the full NXLog Perl API, see the POD documentation in
Nxlog.pm. The documentation can be read with perldoc Log::Nxlog.

Configuration

The xm_perl module accepts the following directives in addition to the
common module directives.

	PerlCode
	
This mandatory directive expects a file containing valid
Perl code. This file is read and parsed by the Perl
interpreter. Methods defined in this file can be called with the
call() procedure.

	

	

On Windows, the Perl script invoked by the PerlCode directive must define
the Perl library paths at the beginning of the script to provide access to the
Perl modules.

nxlog-windows.pl

use lib 'c:\Strawberry\perl\lib';
use lib 'c:\Strawberry\perl\vendor\lib';
use lib 'c:\Strawberry\perl\site\lib';
use lib 'c:\Program Files\nxlog\data';

	Config
	
This optional directive allows you to pass configuration strings
to the script file defined by the PerlCode
directive. This is a block directive and any text enclosed within
<Config></Config> is submitted as a single string literal to the Perl code.

	

	
If you pass several values using this directive (for example,
separated by the \n delimiter) be sure to parse the string correspondingly
inside the Perl code.

Procedures

The following procedures are exported by xm_perl.

	call(string subroutine);
	

Call the given Perl subroutine.

	perl_call(string subroutine, varargs args);
	

Call the given Perl subroutine.

Examples

Example 68. Using the built-in Perl interpreter

In this example, logs are parsed as Syslog and then are passed to
a Perl method which does a GeoIP lookup on the source address of the
incoming message.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Extension perl>
 Module xm_perl
 PerlCode modules/extension/perl/processlogs.pl
</Extension>

<Output fileout>
 Module om_file
 File 'tmp/output'

 # First we parse the input natively from nxlog
 Exec parse_syslog_bsd();

 # Now call the 'process' subroutine defined in 'processlogs.pl'
 Exec perl_call("process");

 # You can also invoke this public procedure 'call' in case
 # of multiple xm_perl instances like this:
 # Exec perl->call("process");
</Output>

<Route r>
 Path	filein => fileout
</Route>

processlogs.pl

use strict;
use warnings;

Without Log::Nxlog you cannot access (read or modify) the event data
use Log::Nxlog;

use Geo::IP;

my $geoip;

BEGIN
{
 # This will be called once when nxlog starts so you can use this to
 # initialize stuff here
 $geoip = Geo::IP->new(GEOIP_MEMORY_CACHE);
}

This is the method which is invoked from 'Exec' for each event
sub process
{
 # The event data is passed here when this method is invoked by the module
 my ($event) = @_;

 # We look up the county of the sender of the message
 my $msgsrcaddr = Log::Nxlog::get_field($event, 'MessageSourceAddress');
 if (defined($msgsrcaddr))
 {
	my $country = $geoip->country_code_by_addr($msgsrcaddr);
	$country = "unknown" unless (defined($country));
	Log::Nxlog::set_field_string($event, 'MessageSourceCountry', $country);
 }

 # Iterate over the fields
 foreach my $fname (@{Log::Nxlog::field_names($event)})
 {
	# Delete all fields except these
	if (! (($fname eq 'raw_event') ||
		($fname eq 'AccountName') ||
		($fname eq 'MessageSourceCountry')))
	{
	 Log::Nxlog::delete_field($event, $fname);
	}
 }

 # Check a field and rename it if it matches
 my $accountname = Log::Nxlog::get_field($event, 'AccountName');
 if (defined($accountname) && ($accountname eq 'John'))
 {
	Log::Nxlog::set_field_string($event, 'AccountName', 'johnny');
	Log::Nxlog::log_info('renamed john');
 }
}

Python (xm_python)

This module provides support for processing NXLog log data with
the Python language.
Only Python version 3 and its minor releases are currently supported.
See the Python prerequisites for using this module on Windows.

The file specified by the PythonCode directive
should contain one or more methods which can be called from the
Exec directive of any module. See also the
im_python and om_python modules.

The Python script should import the nxlog module, and will have access to
the following classes and functions.

	nxlog.log_debug(msg)
	
Send the message msg to the internal logger at DEBUG
log level. This function does the same as the core
log_debug() procedure.

	nxlog.log_info(msg)
	
Send the message msg to the internal logger at INFO
log level. This function does the same as the core
log_info() procedure.

	nxlog.log_warning(msg)
	
Send the message msg to the internal logger at
WARNING log level. This function does the same as the core
log_warning() procedure.

	nxlog.log_error(msg)
	
Send the message msg to the internal logger at ERROR
log level. This function does the same as the core
log_error() procedure.

	class nxlog.Module
	
This class is instantiated by NXLog and can
be accessed via the LogData.module
attribute. This can be used to set or access variables associated with the
module (see the example below).

	class nxlog.LogData
	
This class represents an event. It is instantiated
by NXLog and passed to the method specified by the
python_call() procedure.

	delete_field(name)
	
This method removes the field name from the event
record.

	field_names()
	
This method returns a list with the names of all the fields
currently in the event record.

	get_field(name)
	
This method returns the value of the field name in the
event.

	set_field(name, value)
	
This method sets the value of field name to
value.

	module
	
This attribute is set to the Module object associated with the
event.

Python prerequisites for Windows

Before using this module, you must ensure that the correct Python version is installed and that NXLog can load it.

Install Python manually

These steps install Python for all users on the machine, which is required when the NXLog service is running under the default Local System account.
If you are using a custom service user, you may install Python for only that user.

	
Download the required Python version.

	
Execute the installation wizard and in the first step, choose Customize installation.

	
Select any optional features and click Next.

	
Select Install Python 3.10 for all users and Add Python to environment variables advanced options.

	
Take note of the install location and click Install.

	
When the installation is complete, open the Python installation folder.

	
Copy the Python DLL, e.g., python310.dll, to the NXLog installation folder.

	
Rename the file to libpython<major_version>.<minor_version>.dll.

	
Restart the NXLog service.

Automated Python installation

The following PowerShell script downloads Python, installs it, and copies the necessary DLL file to the NXLog installation folder.
You must specify the required Python version in the $ver variable.

install_python.ps1

[Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12

$ver="3.10.8"

$baseuri="https://www.python.org/ftp/python/" + $ver
$msifile="python-" + $ver +"-amd64.exe"
Invoke-WebRequest -uri $baseuri/$msifile -OutFile $msifile

$sdotver=$ver -replace '([0-9]*)\.([0-9]*)\.([0-9]*)', '$1.$2'
$sver=$sdotver -replace '\.',''

$pydll='C:\Program Files\Python' + $sver + '\python' + $sver + '.dll'
$nxpydll='C:\Program Files\nxlog\libpython' + $sdotver + '.dll'

& ./$msifile /quiet InstallAllUsers=1 PrependPath=1 CompileAll=1

DO
{
 Start-Sleep -s 2
 Write-Host -NoNewline .
}
until (Test-Path $pydll)

Write-Host
Write-Host "Copying DLL: $pydll -> $nxpydll"

cp $pydll $nxpydll

	

	
This script is provided "AS IS" without warranty of any kind, either expressed or implied.
Use at your own risk.

Configuration

The xm_python module accepts the following directives in addition to the
common module directives.

	PythonCode
	
This mandatory directive specifies a file containing Python
code. The python_call() procedure can be used
to call a Python function defined in the file. The function must accept an
nxlog.LogData object as its argument.

Procedures

The following procedures are exported by xm_python.

	call(string subroutine);
	

Call the given Python subroutine.

	python_call(string function);
	

Call the specified function, which must accept an
nxlog.LogData() object as its
only argument.

Examples

Example 69. Using Python for log processing

This configuration calls two Python functions to modify each event record. The
add_checksum() uses Python’s
hashlib module to add a
$ChecksumSHA1 field to the event; the add_counter() function adds a
$Counter field for non-DEBUG events.

	

	
The pm_hmac module offers a more complete implementation for
 checksumming. See Statistical Counters for a native way to add counters.

nxlog.conf

</Input>

<Extension _json>
 Module xm_json
DateFormat YYYY-MM-DD hh:mm:ss
</Extension>

<Extension _syslog>
 Module xm_syslog
</Extension>

<Extension python>
 Module xm_python
 PythonCode "modules/extension/python/py/processlogs2.py"
</Extension>

<Output out>
 Module om_file
 File 'tmp/output'
 <Exec>
 # The $SeverityValue field is added by this procedure.
 # Most other parsers also add a normalized severity value.
 parse_syslog();

 # Add a counter for each event with log level above DEBUG.
 python_call('add_counter');

 # Calculate a checksum (after the counter field is added).
 python_call('add_checksum');

 # Convert to JSON format
 to_json();
 </Exec>
</Output>

<Route python2>
 Path in => out
</Route>

processlogs2.py

import hashlib

import nxlog

def add_checksum(event):
 # Convert field list to dictionary
 all = {}
 for field in event.field_names():
 all.update({field: event.get_field(field)})

 # Calculate checksum and add to event record
 checksum = hashlib.sha1(repr(sorted(all)).encode('utf-8')).hexdigest()
 event.set_field('ChecksumSHA1', checksum)
 nxlog.log_debug('Added checksum field')

def add_counter(event):
 # Get module object and initialize counter
 module = event.module
 if not 'counter' in module:
 module['counter'] = 0
 nxlog.log_debug('Initialized counter field')

 # Skip DEBUG messages
 severity = event.get_field('SeverityValue')
 if severity > 1:
 # Add field
 event.set_field('Counter', module['counter'])
 nxlog.log_debug('Added counter field')

 # Increment counter
 module['counter'] += 1
 nxlog.log_debug('Incremented counter')

Syslog (xm_syslog)

This module provides support for the legacy BSD Syslog protocol as
defined in RFC 3164 and the current IETF standard defined by RFCs
5424-5426. This is achieved by exporting functions and procedures
usable from the NXLog language. The transport is handled by
the respective input and output modules (such as im_udp),
this module only provides a parser and helper functions to create
Syslog messages and handle facility and severity values.

The older but still widespread BSD Syslog standard defines both the
format and the transport protocol in RFC 3164. The transport protocol
is UDP, but to provide reliability and security, this line-based
format is also commonly transferred over TCP and SSL. There is a newer
standard defined in RFC 5424, also known as the IETF Syslog format,
which obsoletes the BSD Syslog format. This format overcomes most of
the limitations of BSD Syslog and allows multi-line messages and
proper timestamps. The transport method is defined in RFC 5426 for UDP
and RFC 5425 for TLS/SSL.

Because the IETF Syslog format supports multi-line messages, RFC 5425
defines a special format to encapsulate these by prepending the
payload size in ASCII to the IETF Syslog message. Messages transferred
in UDP packets are self-contained and do not need this additional
framing. The following input reader and output writer functions are
provided by the xm_syslog module to support this TLS transport defined
in RFC 5425. While RFC 5425 explicitly defines that the TLS network
transport protocol is to be used, pure TCP may be used if security is
not a requirement. Syslog messages can also be written to file with
this framing format using these functions.

	InputType Syslog_TLS
	
This input reader function parses the payload
size and then reads the message according to this value. It is
required to support Syslog TLS transport defined in RFC 5425.

	OutputType Syslog_TLS
	
This output writer function prepends the
payload size to the message. It is required to support Syslog TLS
transport defined in RFC 5425.

	

	
The Syslog_TLS InputType/OutputType can work with any
 input/output such as im_tcp or im_file
 and does not depend on SSL transport at all. The name
 Syslog_TLS was chosen to refer to the octet-framing method
 described in RFC 5425 used for TLS transport.

	

	
The pm_transformer module can also parse and
 create BSD and IETF Syslog messages, but the functions and
 procedures provided by this module make it possible to solve
 more complex tasks which pm_transformer is
 not capable of on its own.

Structured data in IETF Syslog messages is parsed and put into
NXLog fields. The SD-ID will be prepended to the field name
with a dot unless it is NXLOG@XXXX. Consider the following Syslog
message:

<30>1 2011-12-04T21:16:10.000000+02:00 host app procid msgid [exampleSDID@32473 eventSource="Application" eventID="1011"] Message part

After this IETF-formatted Syslog message is parsed with
parse_syslog_ietf(), there will
be two additional fields: $exampleSDID.eventID and
$exampleSDID.eventSource. When SD-ID is NXLOG, the field name will
be the same as the SD-PARAM name. The two additional fields extracted
from the structured data part of the following IETF Syslog message are
$eventID and $eventSource:

<30>1 2011-12-04T21:16:10.000000+02:00 host app procid msgid [NXLOG@32473 eventSource="Application" eventID="1011"] Message part

All fields in the structured data part are parsed as
strings.

Configuration

The xm_syslog module accepts the following directives in addition to
the common module directives.

	IETFTimestampInGMT
	
This optional boolean directive can be used to
format the timestamps produced by
to_syslog_ietf() in UTC/GMT
instead of local time. The default is FALSE: local time is used with
a timezone indicator.

	SnareDelimiter
	
This optional directive takes a single character (see
below) as argument. This character is used
by the to_syslog_snare()
procedure to separate fields. If this directive is not specified,
the default escape character is the tab (\t). In latter versions
of Snare 4 this has changed to the hash mark (#); this directive
can be used to specify the alternative delimiter. Note that there is
no delimiter after the last field.

	SnareReplacement
	
This optional directive takes a single character
(see below) as argument. This character is
used by the to_syslog_snare()
procedure to replace occurrences of the
delimiter character inside the
$Message field. If this directive is not specified, the default
replacement character is the space.

Specifying Quote, Escape, and Delimiter Characters

The SnareDelimiter and
SnareReplacement directives can
be specified in several ways.

	Unquoted single character
	
Any printable character can be specified
as an unquoted character, except for the backslash (\):

Delimiter ;

	Control characters
	
The following non-printable characters can be
specified with escape sequences:

	\a
	
audible alert (bell)

	\b
	
backspace

	\t
	
horizontal tab

	\n
	
newline

	\v
	
vertical tab

	\f
	
formfeed

	\r
	
carriage return

For example, to use TAB delimiting:

Delimiter \t

	A character in single quotes
	
The configuration parser strips
whitespace, so it is not possible to define a space as the delimiter
unless it is enclosed within quotes:

Delimiter ' '

Printable characters can also be enclosed:

Delimiter ';'

The backslash can be specified when enclosed within quotes:

Delimiter '\'

	A character in double quotes
	
Double quotes can be used like single
quotes:

Delimiter " "

The backslash can be specified when enclosed within double quotes:

Delimiter "\"

	A hexadecimal ASCII code
	
Hexadecimal ASCII character codes can also
be used by prepending 0x. For example, the space can be specified
as:

Delimiter 0x20

This is equivalent to:

Delimiter " "

Functions

The following functions are exported by xm_syslog.

	string syslog_facility_string(integer arg)
	

Convert a Syslog facility value to a string.

	integer syslog_facility_value(string arg)
	

Convert a Syslog facility string to an integer.

	string syslog_severity_string(integer arg)
	

Convert a Syslog severity value to a string.

	integer syslog_severity_value(string arg)
	

Convert a Syslog severity string to an integer.

Procedures

The following procedures are exported by xm_syslog.

	parse_syslog();
	

Parse the $raw_event field as either BSD Syslog (RFC 3164)
 or IETF Syslog (RFC 5424) format.

	parse_syslog(string source);
	

Parse the given string as either BSD Syslog (RFC 3164) or IETF
 Syslog (RFC 5424) format.

	parse_syslog_bsd();
	

Parse the $raw_event field as BSD Syslog (RFC 3164)
 format.

	parse_syslog_bsd(string source);
	

Parse the given string as BSD Syslog (RFC 3164) format.

	parse_syslog_ietf();
	

Parse the $raw_event field as IETF Syslog (RFC 5424)
 format.

	parse_syslog_ietf(string source);
	

Parse the given string as IETF Syslog (RFC 5424) format.

	to_syslog_bsd();
	

Create a BSD Syslog formatted log message in $raw_event
 from the fields of the event. The following fields are used to
 construct the $raw_event field: $EventTime; $Hostname;
 $SourceName; $ProcessID; $Message or $raw_event;
 $SyslogSeverity, $SyslogSeverityValue, $Severity, or
 $SeverityValue; and $SyslogFacility or
 $SyslogFacilityValue. If the fields are not present, a sensible
 default is used.

	to_syslog_ietf();
	

Create an IETF Syslog (RFC 5424) formatted log message in
 $raw_event from the fields of the event. The following fields
 are used to construct the $raw_event field: $EventTime;
 $Hostname; $SourceName; $ProcessID; $Message or
 $raw_event; $SyslogSeverity, $SyslogSeverityValue,
 $Severity, or $SeverityValue; and $SyslogFacility or
 $SyslogFacilityValue. If the fields are not present, a sensible
 default is used.

	to_syslog_snare();
	

Create a SNARE Syslog formatted log message in
 $raw_event. The following fields are used to construct the
 $raw_event field: $EventTime, $Hostname, $SeverityValue,
 $FileName, $EventID, $SourceName,$AccountName,
 $AccountType, $EventType, $Category and $Message.

Fields

The following fields are used by xm_syslog.

In addition to the fields listed below, the
parse_syslog() and
parse_syslog_ietf()
procedures will create fields from the Structured Data part of an IETF
Syslog message. If the SD-ID in this case is not "NXLOG", these fields
will be prefixed by the SD-ID (for example, $mySDID.CustomField).

	$raw_event (type: string)
	

A Syslog formatted string, set after
	to_syslog_bsd()
	or
	to_syslog_ietf()
	is called.

	$EventTime (type: datetime)
	

The timestamp found in the Syslog message, set after
	parse_syslog(),
	parse_syslog_bsd(),
	or
	parse_syslog_ietf()
	is called. If the year value is missing, it is set to the
	current year.

	$Hostname (type: string)
	

The hostname part of the Syslog line, set after
	parse_syslog(),
	parse_syslog_bsd(),
	or
	parse_syslog_ietf()
	is called.

	$Message (type: string)
	

The message part of the Syslog line, set after
	parse_syslog(),
	parse_syslog_bsd(),
	or
	parse_syslog_ietf()
	is called.

	$MessageID (type: string)
	

The MSGID part of the syslog message, set after
	parse_syslog_ietf()
	is called.

	$ProcessID (type: string)
	

The process ID in the Syslog line, set after
	parse_syslog(),
	parse_syslog_bsd(),
	or
	parse_syslog_ietf()
	is called.

	$Severity (type: string)
	

The normalized severity name of the event. See
$SeverityValue.

	$SeverityValue (type: integer)
	

The normalized severity number of the event, mapped as follows.

	Syslog Severity	Normalized Severity
	0/emerg
	5/critical

	1/alert
	5/critical

	2/crit
	5/critical

	3/err
	4/error

	4/warning
	3/warning

	5/notice
	2/info

	6/info
	2/info

	7/debug
	1/debug

	$SourceName (type: string)
	

The application/program part of the Syslog line, set after
	parse_syslog(),
	parse_syslog_bsd(),
	or
	parse_syslog_ietf()
	is called.

	$SyslogFacility (type: string)
	

The facility name of the Syslog line, set after
	parse_syslog(),
	parse_syslog_bsd(),
	or
	parse_syslog_ietf()
	is called. The default facility is user.

	$SyslogFacilityValue (type: integer)
	

The facility code of the Syslog line, set after
	parse_syslog(),
	parse_syslog_bsd(),
	or
	parse_syslog_ietf()
	is called. The default facility is 1 (user).

	$SyslogSeverity (type: string)
	

The severity name of the Syslog line, set after
parse_syslog(),
parse_syslog_bsd(), or
parse_syslog_ietf()
is called. The default severity is notice. See
$SeverityValue.

	$SyslogSeverityValue (type: integer)
	

The severity code of the Syslog line, set after
parse_syslog(),
parse_syslog_bsd(), or
parse_syslog_ietf()
is called. The default severity is 5 (notice). See
$SeverityValue.

Examples

Example 70. Sending a File as BSD Syslog over UDP

In this example, logs are collected from files, converted to BSD
Syslog format with the
to_syslog_bsd() procedure, and sent
over UDP with the om_udp module.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Input file>
 Module im_file

 # We monitor all files matching the wildcard.
 # Every line is read into the $raw_event field.
 File "/var/log/app*.log"

 <Exec>
 # Set the $EventTime field usually found in the logs by
 # extracting it with a regexp. If this is not set, the current
 # system time will be used which might be a little off.
 if $raw_event =~ /(\d\d\d\d\-\d\d-\d\d \d\d:\d\d:\d\d)/
 {
 $EventTime = parsedate($1);
 }

 # Now set the severity to something custom. This defaults to
 # 'INFO' if unset.
 if $raw_event =~ /ERROR/ $Severity = 'ERROR';
 else $Severity = 'INFO';

 # The facility can be also set, otherwise the default value is
 # 'USER'.
 $SyslogFacility = 'AUDIT';

 # The SourceName field is called the TAG in RFC 3164
 # terminology and is usually the process name.
 $SourceName = 'my_application';

 # It is also possible to rewrite the Hostname if you do not
 # want to use the system hostname.
 $Hostname = 'myhost';

 # The Message field is used if present, otherwise the current
 # $raw_event is prepended with the Syslog headers. You can do
 # some modifications on the Message if required. Here we add
 # the full path of the source file to the end of message line.
 $Message = $raw_event + ' [' + file_name() + ']';

 # Now create our RFC 3164 compliant Syslog line using the
 # fields set above and/or use sensible defaults where
 # possible. The result will be in $raw_event.
 to_syslog_bsd();
 </Exec>
</Input>

<Output udp>
 # This module just sends the contents of the $raw_event field to
 # the destination defined here, one UDP packet per message.
 Module om_udp
 Host 192.168.1.42
 Port 1514
</Output>

<Route file_to_udp>
 Path file => udp
</Route>

Example 71. Collecting BSD Style Syslog Messages over UDP

To collect BSD Syslog messages over UDP, use the
parse_syslog_bsd() procedure
coupled with the im_udp module as in the following example.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Input udp>
 Module im_udp
 Host 0.0.0.0
 Port 514
 Exec parse_syslog_bsd();
</Input>

<Output file>
 Module om_file
 File "/var/log/logmsg.txt"
</Output>

<Route syslog_to_file>
 Path udp => file
</Route>

Example 72. Collecting IETF Style Syslog Messages over UDP

To collect IETF Syslog messages over UDP as defined by RFC 5424 and
RFC 5426, use the
parse_syslog_ietf() procedure
coupled with the im_udp module as in the following example.
Note that, as for BSD Syslog, the default port is 514 (as defined by
RFC 5426).

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Input ietf>
 Module im_udp
 Host 0.0.0.0
 Port 514
 Exec parse_syslog_ietf();
</Input>

<Output file>
 Module om_file
 File "/var/log/logmsg.txt"
</Output>

<Route ietf_to_file>
 Path ietf => file
</Route>

Example 73. Collecting Both IETF and BSD Syslog Messages over the Same UDP Port

To collect both IETF and BSD Syslog messages over UDP, use the
parse_syslog() procedure coupled with
the im_udp module as in the following example. This
procedure is capable of detecting and parsing both Syslog
formats. Since 514 is the default UDP port number for both BSD and
IETF Syslog, this port can be useful to collect both formats
simultaneously. To accept both formats on different ports, the
appropriate parsers can be used as in the previous two examples.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Input udp>
 Module im_udp
 Host 0.0.0.0
 Port 514
 Exec parse_syslog();
</Input>

<Output file>
 Module om_file
 File "/var/log/logmsg.txt"
</Output>

<Route syslog_to_file>
 Path udp => file
</Route>

Example 74. Collecting IETF Syslog Messages over TLS/SSL

To collect IETF Syslog messages over TLS/SSL as defined by RFC 5424
and RFC 5425, use the
parse_syslog_ietf() procedure
coupled with the im_ssl module as in this example. Note
that the default port is 6514 in this case (as defined by RFC
5425). The payload format parser is handled by the
Syslog_TLS input reader.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Input ssl>
 Module im_ssl
 Host localhost
 Port 6514
 CAFile %CERTDIR%/ca.pem
 CertFile %CERTDIR%/client-cert.pem
 CertKeyFile %CERTDIR%/client-key.pem
 KeyPass secret
 InputType Syslog_TLS
 Exec parse_syslog_ietf();
</Input>

<Output file>
 Module om_file
 File "/var/log/logmsg.txt"
</Output>

<Route ssl_to_file>
 Path ssl => file
</Route>

Example 75. Forwarding IETF Syslog over TCP

The following configuration uses the
to_syslog_ietf() procedure to
convert input to IETF Syslog and forward it over TCP.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Input file>
 Module im_file
 File "/var/log/input.txt"
 Exec $TestField = "test value"; $Message = $raw_event;
</Input>

<Output tcp>
 Module om_tcp
 Host 127.0.0.1
 Port 1514
 Exec to_syslog_ietf();
 OutputType Syslog_TLS
</Output>

<Route file_to_syslog>
 Path file => tcp
</Route>

Because of the Syslog_TLS framing, the raw data sent over TCP will
look like the following.

Output Sample

130 <13>1 2012-01-01T16:15:52.873750Z - - - [NXLOG@14506 EventReceivedTime="2012-01-01 17:15:52" TestField="test value"] test message

This example shows that all fields—except those which are filled by
the Syslog parser—are added to the structured data part.

Example 76. Conditional Rewrite of the Syslog Facility—Version 1

If the message part of the Syslog event matches the regular
expression, the $SeverityValue field will be set to the "error"
Syslog severity integer value (which is provided by the
syslog_severity_value()
function).

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Input udp>
 Module im_udp
 Port 514
 Host 0.0.0.0
 Exec parse_syslog_bsd();
</Input>

<Output file>
 Module om_file
 File "/var/log/logmsg.txt"
 Exec if $Message =~ /error/ $SeverityValue = syslog_severity_value("error");
 Exec to_syslog_bsd();
</Output>

<Route syslog_to_file>
 Path udp => file
</Route>

Example 77. Conditional Rewrite of the Syslog Facility—Version 2

The following example does almost the same thing as the previous
example, except that the Syslog parsing and rewrite is moved to a
processor module and the rewrite only occurs if the facility was
modified. This can make processing faster on multi-core systems
because the processor module runs in a separate thread. This method
can also minimize UDP packet loss because the input module does not
need to parse Syslog messages and therefore can process UDP packets
faster.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Input udp>
 Module im_udp
 Host 0.0.0.0
 Port 514
</Input>

<Processor rewrite>
 Module pm_null
 <Exec>
 parse_syslog_bsd();
 if $Message =~ /error/
 {
 $SeverityValue = syslog_severity_value("error");
 to_syslog_bsd();
 }
 </Exec>
</Processor>

<Output file>
 Module om_file
 File "/var/log/logmsg.txt"
</Output>

<Route syslog_to_file>
 Path udp => rewrite => file
</Route>

WTMP (xm_wtmp)

This module provides a parser function to process binary wtmp
files. The module registers a parser function using the name of the
extension module instance. This parser can be used as a parameter for
the InputType directive in input modules such as
im_file.

Configuration

The xm_wtmp module accepts only the common
module directives.

Examples

Example 78. WTMP to JSON Format Conversion

The following configuration accepts WTMP and converts it to JSON.

nxlog.conf

<Extension wtmp>
 Module xm_wtmp
</Extension>

<Extension json>
 Module xm_json
</Extension>

<Input in>
 Module im_file
 File '/var/log/wtmp'
 InputType wtmp
 Exec to_json();
</Input>

<Output out>
 Module om_file
 File '/var/log/wtmp.txt'
</Output>

<Route processwtmp>
 Path in => out
</Route>

Output Sample

{
 "EventTime":"2013-10-01 09:39:59",
 "AccountName":"root",
 "Device":"pts/1",
 "LoginType":"login",
 "EventReceivedTime":"2013-10-10 15:40:20",
 "SourceModuleName":"input",
 "SourceModuleType":"im_file"
}
{
 "EventTime":"2013-10-01 23:23:38",
 "AccountName":"shutdown",
 "Device":"no device",
 "LoginType":"shutdown",
 "EventReceivedTime":"2013-10-11 10:58:00",
 "SourceModuleName":"input",
 "SourceModuleType":"im_file"
}

XML (xm_xml)

This module provides functions and procedures for working with data
formatted as Extensible Markup Language (XML). It can convert log
messages to XML format and can parse XML into fields.

Configuration

The xm_xml module accepts only the common
module directives.

Functions

The following functions are exported by xm_xml.

	string to_xml()
	

Convert the fields to XML and returns this as a string value.
 The $raw_event field and any field having a leading dot (.)
 or underscore (_) will be automatically excluded.

Procedures

The following procedures are exported by xm_xml.

	parse_xml();
	

Parse the $raw_event field as XML input.

	parse_xml(string source);
	

Parse the given string as XML format.

	to_xml();
	

Convert the fields to XML and put this into the $raw_event
 field. The $raw_event field and any field having a leading dot
 (.) or underscore (_) will be automatically excluded.

Examples

Example 79. Syslog to XML Format Conversion

The following configuration accepts Syslog (both BSD and IETF) and
converts it to XML.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Extension xml>
 Module xm_xml
</Extension>

<Input tcp>
 Module im_tcp
 Port 1514
 Host 0.0.0.0
 Exec parse_syslog(); to_xml();
</Input>

<Output file>
 Module om_file
 File "/var/log/log.xml"
</Output>

<Route tcp_to_file>
 Path tcp => file
</Route>

Input Sample

<30>Sep 30 15:45:43 host44.localdomain.hu acpid: 1 client rule loaded

Output Sample

<Event>
 <MessageSourceAddress>127.0.0.1</MessageSourceAddress>
 <EventReceivedTime>2012-03-08 15:05:39</EventReceivedTime>
 <SyslogFacilityValue>3</SyslogFacilityValue>
 <SyslogFacility>DAEMON</SyslogFacility>
 <SyslogSeverityValue>6</SyslogSeverityValue>
 <SyslogSeverity>INFO</SyslogSeverity>
 <SeverityValue>2</SeverityValue>
 <Severity>INFO</Severity>
 <Hostname>host44.localdomain.hu</Hostname>
 <EventTime>2012-09-30 15:45:43</EventTime>
 <SourceName>acpid</SourceName>
 <Message>1 client rule loaded</Message>
</Event>

Example 80. Converting Windows EventLog to Syslog-Encapsulated XML

The following configuration reads the Windows EventLog and converts it
to the BSD Syslog format where the message part contains the fields
in XML.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Extension xml>
 Module xm_xml
</Extension>

<Input eventlog>
 Module im_msvistalog
 Exec $Message = to_xml(); to_syslog_bsd();
</Input>

<Output tcp>
 Module om_tcp
 Host 192.168.1.1
 Port 1514
</Output>

<Route eventlog_to_tcp>
 Path eventlog => tcp
</Route>

Output Sample

<14>Mar 8 15:12:12 WIN-OUNNPISDHIG Service_Control_Manager: <Event><EventTime>2012-03-08 15:12:12</EventTime><EventTimeWritten>2012-03-08 15:12:12</EventTimeWritten><Hostname>WIN-OUNNPISDHIG</Hostname><EventType>INFO</EventType><SeverityValue>2</SeverityValue><Severity>INFO</Severity><SourceName>Service Control Manager</SourceName><FileName>System</FileName><EventID>7036</EventID><CategoryNumber>0</CategoryNumber><RecordNumber>6791</RecordNumber><Message>The nxlog service entered the running state. </Message><EventReceivedTime>2012-03-08 15:12:14</EventReceivedTime></Event>

Input Modules

Input modules are responsible for collecting event log data from
various sources.

Each module provides a set of fields for each log message, these are
documented in the corresponding sections below. The NXLog core
will add to this set the fields listed in the following section.

Fields

The following fields are used by core.

	$raw_event (type: string)
	

The data received from stream modules (im_file, im_tcp, etc.).

	$EventReceivedTime (type: datetime)
	

The time when the event is received. The value is not modified
	if the field already exists.

	$SourceModuleName (type: string)
	

The name of the module instance, for input modules. The value
	is not modified if the field already exists.

	$SourceModuleType (type: string)
	

The type of module instance (such as im_file), for input
	modules. The value is not modified if the field already
	exists.

DBI (im_dbi)

The im_dbi module allows NXLog to pull log data from external
databases. This module utilizes the
libdbi database abstraction library,
which supports various database engines such as MySQL, PostgreSQL,
MSSQL, Sybase, Oracle, SQLite, and Firebird. A SELECT statement can be
specified, which will be executed periodically to check for new
records.

	

	
The im_dbi and om_dbi modules support GNU/Linux only
 because of the libdbi library. The im_odbc and
 om_odbc modules provide native database access on
 Windows (NXLog EE only).

	

	
libdbi needs drivers to access the
 database engines. These are in the libdbd-* packages on Debian
 and Ubuntu. CentOS 5.6 has a libdbi-drivers RPM package, but
 this package does not contain any driver binaries under
 /usr/lib64/dbd. The drivers for both MySQL and PostgreSQL are in
 libdbi-dbd-mysql. If these are not installed, NXLog will
 return a libdbi driver initialization error.

Configuration

The im_dbi module accepts the following directives in addition to the
common module directives.

	Driver
	
This mandatory directive specifies the name of the libdbi
driver which will be used to connect to the database. A DRIVER name
must be provided here for which a loadable driver module exists
under the name libdbdDRIVER.so (usually under /usr/lib/dbd/). The
MySQL driver is in the libdbdmysql.so file.

	SQL
	
This directive should specify the SELECT statement to be
executed every PollInterval
seconds. The module automatically appends a WHERE id > ? LIMIT 10
clause to the statement. The result set returned by the SELECT
statement must contain an id column which is then stored and used
for the next query.

	Option
	
This directive can be used to specify additional driver
options such as connection parameters. The manual of the libdbi
driver should contain the options available for use here.

	PollInterval
	
This directive specifies how frequently the module will
check for new records, in seconds. If this directive is not
specified, the default is 1 second. Fractional seconds may be
specified (PollInterval 0.5 will check twice every second).

	SavePos
	
If this boolean directive is set to TRUE, the position will
be saved when NXLog exits. The position will be read from
the cache file upon startup. The default is TRUE: the position will
be saved if this directive is not specified. Even if SavePos is
enabled, it can be explicitly turned off with the global
NoCache directive.

Examples

Example 81. Reading From a MySQL Database

This example uses libdbi and the MySQL driver to connect to the logdb
database on the local host and execute the provided statement.

nxlog.conf

<Input dbi>
 Module im_dbi
 Driver mysql
 Option host 127.0.0.1
 Option username mysql
 Option password mysql
 Option dbname logdb
 SQL SELECT id, facility, severity, hostname, \
 timestamp, application, message \
 FROM log
</Input>

<Output file>
 Module om_file
 File "tmp/output"
</Output>

<Route dbi_to_file>
 Path dbi => file
</Route>

External Programs (im_exec)

This module will execute a program or script on startup and read its
standard output. It can be used to easily integrate with exotic log
sources which can be read only with the help of an external script or
program.

	

	
If you are using a Perl script, consider
 turning on Autoflush with $| = 1;, otherwise im_exec
 might not receive data immediately due to Perl’s internal
 buffering. See the Perl language
 reference for more information about $|.

Configuration

The im_exec module accepts the following directives in addition to the
common module directives. The
Command directive is required.

	Command
	
This mandatory directive specifies the name of the program or script
to be executed.

	Arg
	
This is an optional parameter. Arg can be specified multiple
times, once for each argument that needs to be passed to the
Command. Note that specifying multiple
arguments with one Arg directive, with arguments separated by
spaces, will not work (the Command would
receive it as one argument).

	InputType
	
See the InputType description in the
global module configuration section.

	Restart
	
Restart the process if it exits. There is a one second delay
before it is restarted to avoid a denial-of-service when a process
is not behaving. Looping should be implemented in the script itself,
this directive is only to provide some safety against malfunctioning
scripts and programs. This boolean directive defaults to FALSE: the
Command will not be restarted if it
exits.

Examples

Example 82. Emulating im_file

This configuration uses the tail command to read from a file.

	

	
The im_file module should be used to read log
 messages from files. This example only demonstrates the use of
 the im_exec module.

nxlog.conf

<Input messages>
 Module im_exec
 Command /usr/bin/tail
 Arg -f
 Arg /var/log/messages
</Input>

<Output file>
 Module om_file
 File "tmp/output"
</Output>

<Route messages_to_file>
 Path messages => file
</Route>

Files (im_file)

This module can be used to read log messages from files. The file
position can be persistently saved across restarts in order to avoid
reading from the beginning again when NXLog is
restarted. External rotation tools are also supported. When the module
is not able to read any more data from the file, it checks whether the
opened file descriptor belongs to the same filename it opened
originally. If the inodes differ, the module assumes the file was
moved and reopens its input.

im_file uses a one second interval to monitor files for new
messages. This method was implemented because polling a regular file
is not supported on all platforms. If there is no more data to read,
the module will sleep for 1 second.

By using wildcards, the module can read multiple files simultaneously
and will open new files as they appear. It will also enter newly
created directories if recursion is enabled.

	

	
The module needs to scan the directory content for wildcarded
 file monitoring. This can present a significant load if there
 are many files (hundreds or thousands) in the monitored
 directory. For this reason it is highly recommended to rotate
 files out of the monitored directory either using the built-in
 log rotation capabilities of NXLog or with external
 tools.

Configuration

The im_file module accepts the following directives in addition to the
common module directives. The
File directive is required.

	File
	
This mandatory directive specifies the name of the input file
to open. It must be a string type
expression. For relative filenames you should
be aware that NXLog changes its working directory to "/"
unless the global SpoolDir is set to
something else. On Windows systems the directory separator is the
backslash (\). For compatibility reasons the forward slash (/)
character can be also used as the directory separator, but this only
works for filenames not containing wildcards. If the filename is
specified using wildcards, the backslash (\) should be used for
the directory separator.

Wildcards are supported in filenames only, directory names in the path
cannot be wildcarded. Wildcards are not regular expressions, but are
patterns commonly used by Unix shells to expand filenames (also known
as "globbing").

	?
	
Matches a single character only.

	*
	
Matches zero or more characters.

	*
	
Matches the asterisk (*) character.

	\?
	
Matches the question mark (?) character.

	[…]
	
Used to specify a single character. The class description
is a list containing single characters and ranges of characters
separated by the hyphen (-). If the first character of the class
description is ^ or !, the sense of the description is
reversed (any character not in the list is accepted). Any
character can have a backslash (\) preceding it, which is
ignored, allowing the characters] and - to be used in the
character class, as well as ^ and ! at the beginning.

	

	

The backslash (\) is used to escape the wildcard characters.
Unfortunately this is the same as the directory separator on Windows.
Take this into account when specifying wildcarded filenames on this
platform. Suppose that log files under the directory C:\test need to
be monitored. Specifying the wildcard C:\test*.log will not match
because * becomes a literal asterisk and the filename is treated as
non-wildcarded. For this reason the directory separator needs to be
escaped: C:\test*.log will match our files. C:\\test*.log will
also work. When specifying the filename using double quotes, this
would became C:\\test*.log because the backslash is also used as
an escape character inside double quoted string
literals.
Filenames on Windows systems are treated
case-insensitively, but case-sensitively on Unix/Linux.

	ActiveFiles
	
This directive specifies the maximum number of files
NXLog will actively monitor. If there are modifications to
more files in parallel than the value of this directive, then
modifications to files above this limit will only get noticed after
the DirCheckInterval (all data
should be collected eventually). Typically there are only a few log
sources actively appending data to log files, and the rest of the
files are dormant after being rotated, so the default value of 10
files should be sufficient in most cases. This directive is also only
relevant in case of a wildcarded File path.

	CloseWhenIdle
	
If set to TRUE, this boolean directive specifies that
open input files should be closed as soon as possible after there is
no more data to read. Some applications request an exclusive lock on
the log file when written or rotated, and this directive can
possibly help if the application tries again to acquire the lock. The
default is FALSE.

	DirCheckInterval
	
This directive specifies how frequently, in
seconds, the module will check the monitored directory for
modifications to files and new files in case of a wildcarded
File path. The default is twice the value of
the PollInterval directive (if
PollInterval is not set, the default
is 2 seconds). Fractional seconds may be specified. It is
recommended to increase the default if there are many files which
cannot be rotated out and the NXLog process is causing high
CPU load.

	ReadOrder
	
This optional directive specifies the reading order
of the elements in a directory. The accepted values are none, CtimeOldestFirst,
CtimeNewestFirst (Ctime is file creating time),
MtimeOldestFirst, MtimeNewestFirst (Mtime is file modification time),
NameAsc and NameDesc (sort is done according to ASCII codes of name characters).
If directive is not specified then none is used as a default
which means that the order of entries read from the directory is not specified.

	Exclude
	
This directive can specify a file or a set of files (using
wildcards) to be excluded. More than one occurrence of the Exclude
directive can be specified.

	InputType
	
See the InputType directive in the
list of common module directives. If this directive is not specified
the default is LineBased (the module
will use CRLF as the record terminator on Windows, or LF on Unix).

This directive also supports data converters, see the description in the
InputType section.

	NoEscape
	
This boolean directive specifies whether the backslash (\) in
file paths should be disabled as an escape sequence. This is especially
useful for file paths on Windows. By default, NoEscape is FALSE (backslash
escaping is enabled and the path separator on Windows must be escaped).

	OnEOF
	
This optional block directive can be used to specify a group of
statements to execute when a file has been fully read (on end-of-file). Only
one OnEOF block can be specified per im_file module instance. The
following directives are used inside this block.

	Exec
	
This mandatory directive specifies the actions to execute after EOF
has been detected and the grace period has passed. Like the normal
Exec directive, the OnEOF Exec can be specified
as a normal directive or a block directive.

	GraceTimeout
	
This optional directive specifies the time in seconds to wait
before executing the actions configured in the
Exec block or directive. The default is 1
second.

	PollInterval
	
This directive specifies how frequently the module will
check for new files and new log entries, in seconds. If this
directive is not specified, it defaults to 1 second. Fractional
seconds may be specified (PollInterval 0.5 will check twice every
second).

	ReadFromLast
	
This optional boolean directive instructs the module to
only read logs which arrive after NXLog is started. This directive
comes into effect if a saved position is not found, for example on first
start, or when the SavePos directive is FALSE.
When the SavePos directive is TRUE and a
previously saved position is found, the module will always resume reading from
the saved position. If ReadFromLast is FALSE, the module will read all
logs from the beginning of the file. This can result in a lot of messages
and is usually not the expected behavior. If this directive is not specified,
it defaults to TRUE.

The following matrix shows the outcome of this directive in conjunction
with the SavePos directive:

	ReadFromLast	SavePos	Saved Position	Outcome
	TRUE
	TRUE
	No
	Reads events that are logged after NXLog is started.

	TRUE
	TRUE
	Yes
	Reads events from saved position.

	TRUE
	FALSE
	No
	Reads events that are logged after NXLog is started.

	TRUE
	FALSE
	Yes
	Reads events that are logged after NXLog is started.

	FALSE
	TRUE
	No
	Reads all events.

	FALSE
	TRUE
	Yes
	Reads events from saved position.

	FALSE
	FALSE
	No
	Reads all events.

	FALSE
	FALSE
	Yes
	Reads all events.

	Recursive
	
If set to TRUE, this boolean directive specifies that
input files should be searched recursively under
sub-directories. This option takes effect only if wildcards are used
in the filename. For example, if the File
directive is set to /var/log/*.log, then
/var/log/apache2/access.log will also match. Because directory
wildcards are not supported, this directive only makes it possible
to read multiple files from different sub-directories with a single
im_file module instance. The default is TRUE.

	RenameCheck
	
If set to TRUE, this boolean directive specifies that
input files should be monitored for possible file rotation via
renaming in order to avoid re-reading the file contents. A file is
considered to be rotated when NXLog detects a new file whose
inode and size matches that of another watched file which has just
been deleted. Note that this does not always work correctly and can
yield false positives when a log file is deleted and another is
added with the same size. The file system is likely to reuse to
inode number of the deleted file and thus the module will falsely
detect this as a rename/rotation. For this reason the default value
of RenameCheck is FALSE: renamed files are considered to be new
and the file contents will be re-read.

	

	
It is recommended to use a naming scheme for rotated files so
 names of rotated files do not match the wildcard and are not
 monitored anymore after rotation, instead of trying to solve the
 renaming issue with this directive.

	SavePos
	
If this boolean directive is set to TRUE, the file position
will be saved when NXLog exits. The file position will be
read from the cache file upon startup. The default is TRUE, the file
position will be saved if this directive is not specified. This directive
affects the outcome of the ReadFromLast
directive. The SavePos directive can be overridden by the global
NoCache directive.

Functions

The following functions are exported by im_file.

	string file_name()
	

Return the name of the currently open file which the log was
 read from.

Examples

Example 83. Forwarding Logs From a File to a Remote Host

This configuration will read from a file and forward messages
via TCP. No additional processing is done.

nxlog.conf

<Input messages>
 Module im_file
 File "/var/log/messages"
</Input>

<Output tcp>
 Module om_tcp
 Host 192.168.1.1
 Port 514
</Output>

<Route messages_to_tcp>
 Path messages => tcp
</Route>

Internal (im_internal)

NXLog produces its own logs about its operations, including
errors and debug messages. This module makes it possible to insert
those internal log messages into a route. Internal messages can also
be generated from the NXLog language using the
log_info(),
log_warning(), and
log_error() procedures.

	

	
Only messages with log level INFO and above are supported. Debug
 messages are ignored due to technical reasons. For debugging
 purposes the direct logging facility should be used: see the
 global LogFile and
 LogLevel directives.

	

	
One must be careful about the use of the im_internal module
 because it is easy to cause message loops. For example,
 consider the situation when internal log messages are sent to
 a database. If the database is experiencing errors which
 result in internal error messages, then these are again
 routed to the database and this will trigger further error
 messages, resulting in a loop. In order to avoid a resource
 exhaustion, the im_internal module will drop its messages
 when the queue of the next module in the route is full. It is
 recommended to always put the im_internal module instance in
 a separate route.

	

	
If internal messages are required in Syslog format, they must be
 explicitly converted with pm_transformer or
 the to_syslog_bsd() procedure
 of the xm_syslog module, because the
 $raw_event field is not
 generated in Syslog format.

Configuration

The im_internal module accepts only the common
module directives.

Fields

The following fields are used by im_internal.

	$raw_event (type: string)
	

The string passed to the
	log_info() or other log_*
	procedure.

	$ErrorCode (type: integer)
	

The error number provided by the Apache portable runtime
	library, if an error is logged resulting from an operating
	system error.

	$EventTime (type: datetime)
	

The current time.

	$Hostname (type: string)
	

The hostname where the log was produced.

	$Message (type: string)
	

The same value as $raw_event.

	$ProcessID (type: integer)
	

The process ID of the NXLog process.

	$Severity (type: string)
	

The severity name of the event.

	$SeverityValue (type: integer)
	

Depending on the log level of the internal message, the value
	corresponding to "debug", "info", "warning", "error", or
	"critical".

	$SourceName (type: string)
	

Set to nxlog.

Examples

Example 84. Forwarding Internal Messages over Syslog UDP

This configuration collects NXLog internal messages, adds BSD
Syslog headers, and forwards via UDP.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Input internal>
 Module im_internal
</Input>

<Output udp>
 Module om_udp
 Host 192.168.1.1
 Port 514
 Exec to_syslog_bsd();
</Output>

<Route internal_to_udp>
 Path internal => udp
</Route>

Kernel (im_kernel)

This module can collect kernel log messages from the kernel log
buffer. Currently this module works on Linux
only, where the klogctl()
system call is used for this purpose. In order to be able to read
kernel logs, special privileges are required. For this, NXLog
needs to be started as root. Using the User and
Group global directives NXLog can then
drop its root privileges while keeping the CAP_SYS_ADMIN capability in
order to read the kernel log buffer.

	

	
Unfortunately it is not possible to read from the /proc/kmsg
 pseudo file for an unprivileged process even if the
 CAP_SYS_ADMIN capability is kept. For this reason the /proc/kmsg
 interface is not supported by the im_kernel module. The
 im_file module should work fine with the /proc/kmsg
 pseudo file if one wishes to collect kernel logs this way,
 though this will require NXLog to be running as root.

Log Sample

<6>Some message from the kernel.

Kernel messages are valid BSD Syslog messages, with a priority from 0 (emerg)
to 7 (debug), but do not contain timestamp and hostname fields. These can be
parsed with the xm_syslog
parse_syslog_bsd() procedure, and the
timestamp and hostname fields will be added by NXLog.

Configuration

The im_kernel module accepts only the common
module directives.

Examples

Example 85. Storing Raw Kernel Logs into a File

This configuration collects log messages from the kernel and writes
them to file.

nxlog.conf

drop privileges after being started as root
User nxlog
Group nxlog

<Input kernel>
 Module im_kernel
</Input>

<Output file>
 Module om_file
 File "tmp/output"
</Output>

<Route kernel_to_file>
 Path kernel => file
</Route>

Mark (im_mark)

Mark messages are used to indicate periodic activity to assure that
the logger is running when there are no log messages coming in from
other sources.

By default, if no module-specific directives are set, a log message
will be generated every 30 minutes containing -- MARK --.

	

	
The $raw_event field is not
 generated in Syslog format. If mark messages are required in
 Syslog format, they must be explicitly converted with the
 to_syslog_bsd() procedure.

	

	
The functionality of the im_mark module can be also achieved
 using the Schedule block with a
 log_info("--MARK--") Exec statement,
 which would insert the messages via the
 im_internal module into a route. Using a single
 module for this task can simplify configuration.

Configuration

The im_mark module accepts the following directives in addition to the
common module directives.

	Mark
	
This optional directive sets the string for the mark
message. The default is -- MARK --.

	MarkInterval
	
This optional directive sets the interval for mark
messages, in minutes. The default is 30 minutes.

Fields

The following fields are used by im_mark.

	$raw_event (type: string)
	

The value defined by the
	Mark directive, -- MARK
	-- by default.

	$EventTime (type: datetime)
	

The current time.

	$Message (type: string)
	

The same value as $raw_event.

	$ProcessID (type: integer)
	

The process ID of the NXLog process.

	$Severity (type: string)
	

The severity name: INFO.

	$SeverityValue (type: integer)
	

The INFO severity level value: 2.

	$SourceName (type: string)
	

Set to nxlog.

Examples

Example 86. Using the im_mark Module

Here, NXLog will write the specified string to file every
minute.

nxlog.conf

<Input mark>
 Module im_mark
 MarkInterval 1
 Mark -=| MARK |=-
</Input>

<Output file>
 Module om_file
 File "tmp/output"
</Output>

<Route mark_to_file>
 Path mark => file
</Route>

EventLog for Windows XP/2000/2003 (im_mseventlog)

This module can be used to collect EventLog messages on Microsoft
Windows platforms. The module looks up the available EventLog sources
stored under the registry key
SYSTEM\CurrentControlSet\Services\Eventlog and polls logs from
each of these sources or only the sources defined with the
Sources directive.

	

	

Windows Vista, Windows 2008, and later use a new EventLog API which is
not backward compatible. Messages in some events produced by sources
in this new format cannot be resolved with the old API which is used
by this module. If such an event is encountered, a $Message similar to
the following will be set:
The description for EventID XXXX from source SOURCE cannot be read by
im_mseventlog because this does not support the newer WIN2008/Vista
EventLog API. Consider using the im_msvistalog module instead.

Though the majority of event messages can be read with this module
even on Windows 2008/Vista and later, it is recommended to use the
im_msvistalog module instead.

	

	

Strings are stored in DLL and executable files and need to be read by
the module when reading EventLog messages. If a program (DLL/EXE) is
already uninstalled and is not available for looking up a string, the
following message will appear instead:

The description for EventID XXXX from source SOURCE cannot be found.

Configuration

The im_mseventlog module accepts the following directives in addition
to the common module directives.

	ReadFromLast
	
This optional boolean directive instructs the module to
only read logs which arrived after NXLog was started if the
saved position could not be read (for example on first start). When
SavePos is TRUE and a previously
saved position value could be read, the module will resume reading
from this saved position. If ReadFromLast is FALSE, the module
will read all logs from the EventLog. This can result in quite a lot
of messages, and is usually not the expected behavior. If this
directive is not specified, it defaults to TRUE.

	SavePos
	
This boolean directive specifies that the file position
should be saved when NXLog exits. The file position will be
read from the cache file upon startup. The default is TRUE: the file
position will be saved if this directive is not specified. Even if
SavePos is enabled, it can be explicitly turned off with the
global NoCache directive.

	Sources
	
This optional directive takes a comma-separated list of
EventLog filenames, such as Security, Application, to select
specific EventLog sources for reading. If this directive is not
specified, then all available EventLog sources are read (as listed
in the registry). This directive should not be confused with the
$SourceName fielded contained
within the EventLog and it is not a list of such names. The value of
this is stored in the FileName
field.

	UTF8
	
If this optional boolean directive is set to TRUE, all strings
will be converted to UTF-8 encoding. Internally this calls the
convert_fields procedure. The
xm_charconv module must be loaded for the character
set conversion to work. The default is TRUE, but conversion will
only occur if the xm_charconv module is loaded,
otherwise strings will be in the local codepage.

Fields

The following fields are used by im_mseventlog.

	$raw_event (type: string)
	

A string containing the timestamp, hostname, severity, and
	message from the event.

	$AccountName (type: string)
	

The username associated with the event.

	$AccountType (type: string)
	

The type of the account. Possible values are: User, Group,
	Domain, Alias, Well Known Group, Deleted Account,
	Invalid, Unknown, and Computer.

	$Category (type: string)
	

The category name resolved from CategoryNumber.

	$CategoryNumber (type: integer)
	

The category number, stored as Category in the EventRecord.

	$Domain (type: string)
	

The domain name of the user.

	$EventID (type: integer)
	

The event ID of the EventRecord.

	$EventTime (type: datetime)
	

The TimeGenerated field of the EventRecord.

	$EventTimeWritten (type: datetime)
	

The TimeWritten field of the EventRecord.

	$EventType (type: string)
	

The type of the event, which is a string describing the
	severity. Possible values are: ERROR, AUDIT_FAILURE,
	AUDIT_SUCCESS, INFO, WARNING, and UNKNOWN.

	$FileName (type: string)
	

The logfile source of the event (for example, Security or
	Application).

	$Hostname (type: string)
	

The host or computer name field of the EventRecord.

	$Message (type: string)
	

The message from the event.

	$RecordNumber (type: integer)
	

The number of the event record.

	$Severity (type: string)
	

The normalized severity name of the event. See
$SeverityValue.

	$SeverityValue (type: integer)
	

The normalized severity number of the event, mapped as follows.

	Event Log Severity	Normalized Severity
	0/Audit Success
	2/INFO

	0/Audit Failure
	4/ERROR

	1/Critical
	5/CRITICAL

	2/Error
	4/ERROR

	3/Warning
	3/WARNING

	4/Information
	2/INFO

	5/Verbose
	1/DEBUG

	$SourceName (type: string)
	

The event source which produced the event (the subsystem or
	application name).

Examples

Example 87. Forwarding EventLogs from a Windows Machine to a Remote Host

This configuration collects Windows EventLog and forwards the messages
to a remote host via TCP.

nxlog.conf

<Input eventlog>
 Module im_mseventlog
</Input>

<Output tcp>
 Module om_tcp
 Host 192.168.1.1
 Port 514
</Output>

<Route eventlog_to_tcp>
 Path eventlog => tcp
</Route>

EventLog for Windows 2008/Vista/Later (im_msvistalog)

This module can be used to collect EventLog messages on Microsoft
Windows platforms which support the newer EventLog API (also known as
the Crimson EventLog subsystem), namely Windows 2008/Vista and later.
See the official Microsoft documentation about
Event Logs.
The module supports reading all System, Application, and Custom
events. It looks up the available channels and monitors events in
each unless the Query and
Channel directives are explicitly
defined.

	

	
This module will not work on Windows 2003 and earlier because
 Windows Vista, Windows 2008, and later use a new EventLog API
 which is not available in earlier Windows versions. EventLog
 messages on these platforms can be collected with the
 im_mseventlog module.

	

	
The Windows EventLog subsystem does not support subscriptions to
 Debug and Analytic channels, thus it is not possible to collect
 these types of events with this module.

In addition to the standard set of fields
which are listed under the System section, event providers can define
their own additional schema which enables logging additional data
under the EventData section. The Security log makes use of this new
feature and such additional fields can be seen as in the following XML
snippet:

<EventData>
 <Data Name="SubjectUserSid">S-1-5-18</Data>
 <Data Name="SubjectUserName">WIN-OUNNPISDHIG$</Data>
 <Data Name="SubjectDomainName">WORKGROUP</Data>
 <Data Name="SubjectLogonId">0x3e7</Data>
 <Data Name="TargetUserSid">S-1-5-18</Data>
 <Data Name="TargetUserName">SYSTEM</Data>
 <Data Name="TargetDomainName">NT AUTHORITY</Data>
 <Data Name="TargetLogonId">0x3e7</Data>
 <Data Name="LogonType">5</Data>
 <Data Name="LogonProcessName">Advapi</Data>
 <Data Name="AuthenticationPackageName">Negotiate</Data>
 <Data Name="WorkstationName" />
 <Data Name="LogonGuid">{00000000-0000-0000-0000-000000000000}</Data>
 <Data Name="TransmittedServices">-</Data>
 <Data Name="LmPackageName">-</Data>
 <Data Name="KeyLength">0</Data>
 <Data Name="ProcessId">0x1dc</Data>
 <Data Name="ProcessName">C:\Windows\System32\services.exe</Data>
 <Data Name="IpAddress">-</Data>
 <Data Name="IpPort">-</Data>
</EventData>

NXLog can extract this data when fields are logged using this
schema. The values will be available in the fields of the internal
NXLog log structure. This is especially useful because there
is no need to write pattern matching rules to extract this data from
the message. These fields can be used in filtering rules, be written
into SQL tables, or be used to trigger actions. The
Exec directive can be used for filtering:

<Input in>
 Module im_msvistalog
 Exec if ($TargetUserName == 'SYSTEM') OR \
 ($EventType == 'VERBOSE') drop();
</Input>

Configuration

The im_msvistalog module accepts the following directives in addition
to the common module directives.

	BatchSize
	
This optional directive can be used to specify the number
of event records the EventLog API will pass to the module for
processing. Larger sizes may increase throughput. Note that there is
a known issue in the Windows EventLog subsystem: when this value is
higher than 31 it may fail to retrieve some events on busy systems,
returning the error "EvtNext failed with error 1734: The array
bounds are invalid." For this reason, increasing this value is not
recommended. The default is 31.

	Channel
	
The name of the Channel to query. If not specified, the
module will read from all sources defined in the registry. See the
MSDN documentation about
Event
Selection.

	PollInterval
	
This directive specifies how frequently
the module will check for new events, in seconds. If this directive is not
specified, the default is 1 second. Fractional seconds may be
specified (PollInterval 0.5 will check twice every second).

	Query
	
This directive specifies the query for pulling only specific
EventLog sources. See the MSDN documentation about
Event
Selection. Note that this directive requires a single-line
parameter, so multi-line query XML should be specified using line
continuation:

Query <QueryList> \
 <Query Id='1'> \
 <Select Path='Security'>*[System/Level=4]</Select> \
 </Query> \
 </QueryList>

When the Query contains an XPath style expression, the
Channel must also be specified.
Otherwise if an XML Query is specified, the
Channel should not be used.

	QueryXML
	
This directive is the same as the
Query directive above, except it can
be used as a block. Multi-line XML queries can be used without line
continuation, and the XML Query can be copied directly from Event
Viewer.

<QueryXML>
 <QueryList>
 <Query Id='1'>
 <Select Path='Security'>*[System/Level=4]</Select>
 </Query>
 </QueryList>
</QueryXML>

	ReadFromLast
	
This optional boolean directive instructs the module to
only read logs which arrived after NXLog was started if the
saved position could not be read (for example on first start). When
SavePos is TRUE and a previously
saved position value could be read, the module will resume reading
from this saved position. If ReadFromLast is FALSE, the module
will read all logs from the EventLog. This can result in quite a lot
of messages, and is usually not the expected behavior. If this
directive is not specified, it defaults to TRUE.

	SavePos
	
This boolean directive specifies that the file position
should be saved when NXLog exits. The file position will be
read from the cache file upon startup. The default is TRUE: the file
position is saved if this directive is not specified. Even if
SavePos is enabled, it can be explicitly turned off with the
global NoCache directive.

Fields

The following fields are used by im_msvistalog.

	$raw_event (type: string)
	

A string containing the EventTime, Hostname, Severity,
	EventID, and Message from the event.

	$AccountName (type: string)
	

The username associated with the event.

	$AccountType (type: string)
	

The type of the account. Possible values are: User, Group,
	Domain, Alias, Well Known Group, Deleted Account,
	Invalid, Unknown, and Computer.

	$ActivityID (type: string)
	

A globally unique identifier for the current activity, as stored in
EvtSystemActivityID.

	$Category (type: string)
	

The category name resolved from Task.

	$Channel (type: string)
	

The Channel of the event source (for example, Security or
	Application).

	$Domain (type: string)
	

The domain name of the user.

	$EventID (type: integer)
	

The event ID (specific to the event source) from the EvtSystemEventID
field.

	$EventTime (type: datetime)
	

The EvtSystemTimeCreated field.

	$EventType (type: string)
	

The type of the event, which is a string describing the
	severity. This is translated to its string representation from
	EvtSystemLevel. Possible values are: CRITICAL, ERROR,
	AUDIT_FAILURE, AUDIT_SUCCESS, INFO, WARNING, and
	VERBOSE.

	$Hostname (type: string)
	

The EvtSystemComputer field.

	$Keywords (type: integer)
	

The value of the Keywords field from EvtSystemKeywords.

	$Message (type: string)
	

The message from the event.

	$Opcode (type: string)
	

The Opcode string resolved from OpcodeValue.

	$OpcodeValue (type: integer)
	

The Opcode number of the event as in EvtSystemOpcode.

	$ProcessID (type: integer)
	

The process identifier of the event producer as in
	EvtSystemProcessID.

	$ProviderGuid (type: string)
	

The globally unique identifier of the event’s provider as stored in
EvtSystemProviderGuid. This corresponds to the name of the provider in
the $SourceName field.

	$RecordNumber (type: integer)
	

The number of the event record.

	$RelatedActivityID (type: string)
	

The RelatedActivityID as stored in EvtSystemRelatedActivityID.

	$Severity (type: string)
	

The normalized severity name of the event. See
$SeverityValue.

	$SeverityValue (type: integer)
	

The normalized severity number of the event, mapped as follows.

	Event Log Severity	Normalized Severity
	0/Audit Success
	2/INFO

	0/Audit Failure
	4/ERROR

	1/Critical
	5/CRITICAL

	2/Error
	4/ERROR

	3/Warning
	3/WARNING

	4/Information
	2/INFO

	5/Verbose
	1/DEBUG

	$SourceName (type: string)
	

The event source which produced the event, from the
	EvtSystemProviderName field.

	$Task (type: integer)
	

The task number from the EvtSystemTask field.

	$ThreadID (type: integer)
	

The thread identifier of the event producer as in
	EvtSystemThreadID.

	$UserID (type: string)
	

The Security Identifier (SID) which resolves to
$AccounteName, stored
in EvtSystemUserID.

	$Version (type: integer)
	

The Version number of the event as in EvtSystemVersion.

Examples

Example 88. Forwarding Windows EventLog from Windows to a Remote Host in Syslog Format

This configuration collects Windows EventLog with the specified
query. BSD Syslog headers are added and the messages are forwarded to
a remote host via TCP.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Input eventlog>
 Module im_msvistalog
 <QueryXML>
 <QueryList>
 <Query Id='0'>
 <Select Path='Application'>*</Select>
 <Select Path='Security'>*[System/Level<4]</Select>
 <Select Path='System'>*</Select>
 </Query>
 </QueryList>
 </QueryXML>
</Input>

<Output tcp>
 Module om_tcp
 Host 192.168.1.1
 Port 514
 Exec to_syslog_bsd();
</Output>

<Route eventlog_to_tcp>
 Path eventlog => tcp
</Route>

Null (im_null)

This module does not generate any input, so basically it does nothing.
Yet it can be useful for creating a dummy route, for testing purposes,
or for Scheduled NXLog code
execution. The im_null module accepts only the
common module directives. See
this example for usage.

Perl (im_perl)

The Perl programming language is widely used for log
processing and comes with a broad set of modules bundled or available
from CPAN. Code can be written more quickly in Perl
than in C, and code execution is safer because exceptions (croak/die)
are handled properly and will only result in an unfinished attempt at
log processing rather than taking down the whole NXLog
process.

This module makes it possible to execute Perl code in an input module
to capture and inject event data directly into NXLog. See also
the om_perl and xm_perl modules.

The module will parse the file specified in the
PerlCode directive when NXLog starts the
module. The Perl code must implement the read_data subroutine which will be
called by the module. To generate event data, the Log::Nxlog Perl module must
be included, which provides the following methods.

	

	
To use the im_perl module on Windows, a separate Perl
 environment must be installed, such as
 Strawberry Perl. Currently, the im_perl module on Windows requires Strawberry Perl 5.28.2.1.

	log_debug(msg)
	
Send the message msg to the internal logger on
DEBUG log level. This method does the same as the
log_debug() procedure in NXLog.

	log_info(msg)
	
Send the message msg to the internal logger on INFO
log level. This method does the same as the
log_info() procedure in NXLog.

	log_warning(msg)
	
Send the message msg to the internal logger on
WARNING log level. This method does the same as the
log_warning() procedure in NXLog.

	log_error(msg)
	
Send the message msg to the internal logger on
ERROR log level. This method does the same as the
log_error() procedure in NXLog.

	add_input_data(event)
	
Pass the event record to the next module
instance in the route. Failure to call this method will result in a
memory leak.

	logdata_new()
	
Create a new event record. The return value can be
used with the set_field_*() methods to insert data.

	set_field_boolean(event, key, value)
	
Set the boolean value in the
field named key.

	set_field_integer(event, key, value)
	
Set the integer value in the
field named key.

	set_field_string(event, key, value)
	
Set the string value in the
field named key.

	set_read_timer(delay)
	
Set the timer in seconds to invoke the
read_data method again.

	

	
The set_read_timer() method should be called in order to invoke
 read_data again. This is typically used for polling data. The
 read_data method must not block.

For the full NXLog Perl API, see the POD documentation in
Nxlog.pm. The documentation can be read with perldoc Log::Nxlog.

Configuration

The im_perl module accepts the following directives in addition to the
common module directives.

	PerlCode
	
This mandatory directive expects a file containing valid
Perl code that implements the read_data subroutine. This file is
read and parsed by the Perl interpreter.

	

	

On Windows, the Perl script invoked by the PerlCode directive must define
the Perl library paths at the beginning of the script to provide access to the
Perl modules.

nxlog-windows.pl

use lib 'c:\Strawberry\perl\lib';
use lib 'c:\Strawberry\perl\vendor\lib';
use lib 'c:\Strawberry\perl\site\lib';
use lib 'c:\Program Files\nxlog\data';

	Config
	
This optional directive allows you to pass configuration strings
to the script file defined by the PerlCode
directive. This is a block directive and any text enclosed within
<Config></Config> is submitted as a single string literal to the Perl code.

	

	
If you pass several values using this directive (for example,
separated by the \n delimiter) be sure to parse the string correspondingly
inside the Perl code.

	Call
	
This optional directive specifies the Perl subroutine to invoke. With
this directive, you can call only specific subroutines from your Perl code.
If the directive is not specified, the default subroutine read_data is invoked.

Examples

Example 89. Using im_perl to Generate Event Data

In this example, logs are generated by a Perl function that increments
a counter and inserts it into the generated line.

nxlog.conf

<Output file2>
 Module om_file
 File 'tmp/output2'
</Output>

<Input perl>
 Module im_perl
 PerlCode modules/input/perl/perl-input.pl
 Call read_data1
</Input>

<Input perl2>
 Module im_perl
 PerlCode modules/input/perl/perl-input2.pl
</Input>

<Route r1>
 Path perl => file
</Route>

<Route r2>
 Path perl2 => file2
</Route>

perl-input.pl

use strict;
use warnings;

use Log::Nxlog;

my $counter;

sub read_data1
{
 my $event = Log::Nxlog::logdata_new();
 $counter //= 1;
 my $line = "Input1: this is a test line ($counter) that should appear in the output";
 $counter++;
 Log::Nxlog::set_field_string($event, 'raw_event', $line);
 Log::Nxlog::add_input_data($event);
 if ($counter <= 100)
 {
 Log::Nxlog::set_read_timer(0);
 }
}

Named Pipes (im_pipe)

This module can be used to read log messages from named pipes on UNIX-like
operating systems.

Configuration

The im_pipe module accepts the following directives in addition to the
common module directives.

	CreateDir
	
If set to TRUE, this optional boolean directive instructs
the module to create the directory where the Pipe
pipe file is located, if it does not already exist. The default is FALSE.

	Pipe
	
This mandatory directive specifies the name of the input pipe file.
The module checks if the specified pipe file exists and creates it in case
it does not.
If the specified pipe file is not a named pipe, the module does not start.

	InputType
	
This directive specifies the input data format. The default value
is LineBased. See the InputType directive in the list of
common module directives.

	Group
	
Use this directive to set the group ownership for the created
socket or pipe or file. By default, this is the group NXLog is running as, (which
may be specified by the global Group directive).
This directive is not currently supported on Windows.

	Perms
	
This directive specifies the permissions to use for the created
socket or pipe or file. This must be a four-digit octal value beginning with a zero. By
default, OS default permissions will be set.
This directive is not currently supported on Windows.

	User
	
Use this directive to set the user ownership for the created
socket or pipe or file. By default, this is the user NXLog is running as (which may
be specified by the global User directive).
This directive is not currently supported on Windows.

Examples

This example provides the NXLog configuration for processing messages
from a named pipe on a UNIX-like operating system.

Example 90. Forwarding Logs From a Pipe to a Remote Host

With this configuration, NXLog reads messages from a named
pipe and forwards them via TCP. No additional processing is done.

nxlog.conf

<Input in>
 Module im_pipe
 Pipe "tmp/pipe"
</Input>

<Output out>
 Module om_tcp
 Host 192.168.1.2
 Port 514
</Output>

Python (im_python)

This module provides support for collecting log data with methods written in
the Python language.
Only Python version 3 and its minor releases are currently supported.
See the Python prerequisites for using this module on Windows.

The file specified by the PythonCode directive
should contain a read_data() method which is called by the im_python module
instance. See also the xm_python and om_python
modules.

The Python script should import the nxlog module, and will have access to
the following classes and functions.

	nxlog.log_debug(msg)
	
Send the message msg to the internal logger at DEBUG
log level. This function does the same as the core
log_debug() procedure.

	nxlog.log_info(msg)
	
Send the message msg to the internal logger at INFO
log level. This function does the same as the core
log_info() procedure.

	nxlog.log_warning(msg)
	
Send the message msg to the internal logger at
WARNING log level. This function does the same as the core
log_warning() procedure.

	nxlog.log_error(msg)
	
Send the message msg to the internal logger at ERROR
log level. This function does the same as the core
log_error() procedure.

	class nxlog.Module
	
This class will be instantiated by NXLog and
passed to the read_data() method in the script.

	logdata_new()
	
This method returns a new LogData event object.

	set_read_timer(delay)
	
This method sets a trigger for another read after a
specified delay in seconds (float).

	class nxlog.LogData
	
This class represents a Logdata event object.

	delete_field(name)
	
This method removes the field name from the event
record.

	field_names()
	
This method returns a list with the names of all the fields
currently in the event record.

	get_field(name)
	
This method returns the value of the field name in the
event.

	post()
	
This method will submit the LogData event to NXLog for
processing by the next module in the route.

	set_field(name, value)
	
This method sets the value of field name to
value.

	module
	
This attribute is set to the Module object associated with the
event.

Configuration

The im_python module accepts the following directives in addition to the
common module directives.

	PythonCode
	
This mandatory directive specifies a file containing Python
code. The im_python instance will call a read_data() function which must
accept an nxlog.Module object as its only
argument.

	Call
	
This optional directive specifies the Python method to invoke. With
this directive, you can call only specific methods from your Python code.
If the directive is not specified, the default method read_data is invoked.

Examples

Example 91. Using im_python to generate event data

In this example, a Python script is used to read Syslog events from multiple
log files bundled in tar archives, which may be compressed. The
parse_syslog() procedure is also used to parse
the events.

	

	
To avoid re-reading archives, each one should be removed after reading
 (see the comments in the script) or other similar functionality
 implemented.

nxlog.conf

<Extension _syslog>
 Module xm_syslog
</Extension>

<Input in>
 Module im_python
 PythonCode modules/input/python/2_python.py
 Exec parse_syslog();
</Input>

<Route>
 Path in => out
</Route>

2_python.py

import os
import tarfile

import nxlog

LOG_DIR = 'modules/input/python/2_logdir'
POLL_INTERVAL = 30

def read_data(module):
 nxlog.log_debug('Checking for new archives')
 for file in os.listdir(LOG_DIR):
 path = os.path.join(LOG_DIR, file)
 nxlog.log_debug("Attempting to read from '{}'".format(path))
 try:
 for line in read_tar(path):
 event = module.logdata_new()
 event.set_field('ImportFile', path)
 event.set_field('raw_event', line.decode('utf-8'))
 event.post()
 nxlog.log_debug("Added event from '{}'".format(path))
 nxlog.log_debug("Added all events from '{}'".format(path))
 # Each archive should be removed after reading to prevent reading
 # the same file again. Requires adequate permissions.
 #nxlog.log_debug("Deleting file '{}'".format(path))
 #os.remove(path)
 except tarfile.ReadError:
 msg = "Skipping invalid tar file '{}'".format(path)
 nxlog.log_error(msg)
 # Check for files again after specified delay
 msg = 'Adding a read event with {} seconds delay'.format(POLL_INTERVAL)
 nxlog.log_debug(msg)
 module.set_read_timer(POLL_INTERVAL)

def read_tar(path):
 """Yield a string for each line in each file in tar file."""
 with tarfile.open(path) as tar:
 for file in tar:
 inner_file = tar.extractfile(file)
 for line in inner_file:
 yield line

TLS/SSL (im_ssl)

The im_ssl module uses the OpenSSL library to provide an SSL/TLS
transport. It behaves like the im_tcp module, except that
an SSL handshake is performed at connection time and the data is sent
over a secure channel. Log messages transferred over plain TCP can be
eavesdropped or even altered with a man-in-the-middle attack, while
the im_ssl module provides a secure log message transport.

Configuration

The im_ssl module accepts the following directives in addition to the
common module directives.

	Host
	
The module will accept connections on this IP address or DNS
hostname. The default is localhost.

	Port
	
The module will listen for incoming connections on this port
number. The default is port 514.

	AllowUntrusted
	
This boolean directive specifies that the remote
connection should be allowed without certificate verification. If
set to TRUE the remote will be able to connect with an unknown or
self-signed certificate. The default value is FALSE: all connections
must present a trusted certificate.

	CADir
	
This specifies the path to a directory containing certificate
authority (CA) certificates, which will be used to check the
certificate of the remote socket. The certificate filenames in this
directory must be in the OpenSSL hashed format.

	CAFile
	
This specifies the path of the certificate authority (CA)
certificate, which will be used to check the certificate of the
remote socket.

	CertFile
	
This specifies the path of the certificate file to be used
for the SSL handshake.

	CertKeyFile
	
This specifies the path of the certificate key file to
be used for the SSL handshake.

	KeyPass
	
With this directive, a password can be supplied for the
certificate key file defined in
CertKeyFile. This directive is not
needed for passwordless private keys.

	CRLDir
	
This specifies the path to a directory containing certificate
revocation lists (CRLs), which will be consulted when checking the
certificate of the remote socket. The certificate filenames in this
directory must be in the OpenSSL hashed format.

	CRLFile
	
This specifies the path of the certificate revocation list
(CRL) which will be consulted when checking the certificate of the
remote socket.

	RequireCert
	
This boolean value specifies that the remote must
present a certificate. If set to TRUE and there is no certificate
presented during the connection handshake, the connection will be
refused. The default value is TRUE: each connection must use a
certificate.

Fields

The following fields are used by im_ssl.

	$raw_event (type: string)
	

The received string.

	$MessageSourceAddress (type: string)
	

The IP address of the remote host.

Examples

Example 92. Accepting Binary Logs From Another NXLog Agent

This configuration accepts secured log messages in the NXLog
binary format and writes them to file.

nxlog.conf

<Input ssl>
 Module im_ssl
 Host localhost
 Port 23456
 CAFile %CERTDIR%/ca.pem
 CertFile %CERTDIR%/client-cert.pem
 CertKeyFile %CERTDIR%/client-key.pem
 KeyPass secret
 InputType Binary
</Input>

<Output file>
 Module om_file
 File "tmp/output"
</Output>

<Route ssl_to_file>
 Path ssl => file
</Route>

Systemd (im_systemd)

Systemd is a Linux initialization system with parallelization capabilities
and dependency-based control logic. Systemd journal is the logging
component of systemd.

The im_systemd module accepts messages from the systemd journal.

	

	
To enable running the im_systemd module under the nxlog user,
 the latter must be added to the systemd-journal group. For example,
 this could be the following command:

 $ sudo gpasswd -a nxlog -g systemd-journal

Configuration

The im_systemd module accepts the following directive in addition to
the common module directives.

	ReadFromLast
	
If set to TRUE, this optional boolean directive will read only
new entries from the journal.

Fields

The following fields are used by im_systemd.

	$raw_event (type: string)
	

A list of event fields in key-value pairs.

	$AuditSession (type: string)
	

Session of the process the journal entry originates from,
 as maintained by the kernel audit subsystem.

	$AuditUID (type: string)
	

Login UID of the process the journal entry originates from,
 as maintained by the kernel audit subsystem.

	$AuditUID (type: string)
	

Login UID of the process the journal entry originates from,
 as maintained by the kernel audit subsystem.

	$BootID (type: string)
	

Kernel boot ID for the boot the message was
 generated in, formatted as a 128-bit hexadecimal string.

	$Capabilities (type: string)
	

Effective capabilities of the process the journal entry originates
 from.

	$CodeFile (type: string)
	

Code location to generate this message, if known.
 Contains the source filename.

	$CodeFunc (type: string)
	

Code location to generate this message, if known.
 Contains the function name.

	$CodeLine (type: integer)
	

Code location to generate this message, if known.
 Contains the line number.

	$CoredumpUnit (type: string)
	

Annotation to the message in case it contains coredumps from system
 and session units.

	$CoredumpUserUnit (type: string)
	

Annotation to the message in case it contains coredumps from system
 and session units.

	$DevLink (type: string)
	

Additional symlink names pointing to the device node under the '/dev'
 directory.

	$DevName (type: string)
	

Device name of the kernel as it shows up in the device tree under the
 '/sys' directory.

	$DevNode (type: string)
	

Node path of the device under the '/dev' directory.

	$Errno (type: integer)
	

Low-level Unix error number which caused the entry, if any.
 Contains the numeric value of 'errno' formatted as a decimal string.

	$EventTime (type: datetime)
	

The earliest trusted timestamp of the message,
 if any is known that is different from the reception
 time of the journal.

	$Facility (type: string)
	

Syslog compatibility fields containing the facility.

	$Group (type: string)
	

Group ID of the process the journal entry originates from.

	$Hostname (type: string)
	

The name of the originating host.

	$KernelDevice (type: string)
	

Device name of the kernel.
 If the entry is associated to a block device, the field contains the
 major and minor of the device node, separated by ":" and prefixed by
 "b". Similar for character devices but prefixed by "c". For network
 devices, this is the interface index prefixed by "n". For all other
 devices, this is the subsystem name prefixed by "+", followed by ":",
 followed by the kernel device name.

	$KernelSubsystem (type: string)
	

Subsystem name of the kernel.

	$MachineID (type: string)
	

Machine ID of the originating host.

	$Message (type: string)
	

A human-readable message string for the current entry.
 	This is supposed to be the primary text shown to the user.
 	This is usually not translated (but might be in some cases),
 	and not supposed to be parsed for metadata.

	$MessageID (type: string)
	

A 128-bit message identifier for recognizing certain message
 types, if this is desirable. This should contain a 128-bit identifier
 formatted as a lower-case hexadecimal string, without any
 separating dashes or suchlike. This is recommended to be
 a UUID-compatible ID, but this is not enforced, and formatted
 differently.

	$ObjAuditSession (type: integer)
	

This field contains the same value as the 'AuditSession', except that
 the process identified by PID is described, instead of the process
 which logged the message.

	$ObjAuditUID (type: integer)
	

This field contains the same value as the 'AuditUID', except that
 the process identified by PID is described, instead of the process
 which logged the message.

	$ObjGroup (type: integer)
	

This field contains the same value as the 'Group', except that the
 process identified by PID is described, instead of the process which
 logged the message.

	$ObjProcessCmdLine (type: integer)
	

This field contains the same value as the 'ProcessCmdLine', except
 that the process identified by PID is described, instead of the
 process which logged the message.

	$ObjProcessExecutable (type: integer)
	

This field contains the same value as the 'ProcessExecutable', except
 that the process identified by PID is described, instead of the
 process which logged the message.

	$ObjProcessID (type: integer)
	

This field contains the same value as the 'ProcessID', except that the
 process identified by PID is described, instead of the process which
 logged the message.

	$ObjProcessName (type: integer)
	

This field contains the same value as the 'ProcessName', except that
 the process identified by PID is described, instead of the process
 which logged the message.

	$ObjSystemdCGroup (type: integer)
	

This field contains the same value as the 'SystemdCGroup', except
 that the process identified by PID is described, instead of the
 process which logged the message.

	$ObjSystemdOwnerUID (type: integer)
	

This field contains the same value as the 'SystemdOwnerUID', except
 that the process identified by PID is described, instead of the
 process which logged the message.

	$ObjSystemdSession (type: integer)
	

This field contains the same value as the 'SystemdSession', except
 that the process identified by PID is described, instead of the
 process which logged the message.

	$ObjSystemdUnit (type: integer)
	

This field contains the same value as the 'SystemdUnit', except that
 the process identified by PID is described, instead of the process
 which logged the message.

	$ObjUser (type: integer)
	

This field contains the same value as the 'User', except that the
 process identified by PID is described, instead of the process which
 logged the message.

	$ObjUser (type: integer)
	

This field contains the same name as the 'User', except that the
 process identified by PID is described, instead of the process which
 logged the message.

	$ProcessCmdLine (type: string)
	

Command line of the process the journal entry originates from.

	$ProcessExecutable (type: string)
	

Executable path of the process the journal entry originates from.

	$ProcessID (type: string)
	

Syslog compatibility field containing the client PID.

	$ProcessName (type: string)
	

Name of the process the journal entry originates from.

	$SelinuxContext (type: string)
	

SELinux security context (label) of the process the journal entry
 originates from.

	$Severity (type: string)
	

A priority value between 0 ("emerg") and 7 ("debug")
 formatted as a string. This field is compatible with
 syslog’s priority concept.

	$SeverityValue (type: integer)
	

A priority value between 0 ("emerg") and 7 ("debug")
 formatted as a decimal string. This field is compatible with
 syslog’s priority concept.

	$SourceName (type: string)
	

Syslog compatibility field containing the identifier
 string (i.e. "tag").

	$SysInvID (type: string)
	

Invocation ID for the runtime cycle of the
 unit the message was generated in, as available
 to processes of the unit in $INVOCATION_ID.

	$SystemdCGroup (type: string)
	

Control group path in the systemd hierarchy of the process the
 journal entry originates from.

	$SystemdOwnerUID (type: string)
	

Owner UID of the systemd session (if any)
 of the process the journal entry originates from.

	$SystemdSession (type: string)
	

Systemd session ID (if any) of the process the journal entry
 originates from.

	$SystemdSlice (type: string)
	

Systemd slice unit of the process the journal entry originates from.

	$SystemdUnit (type: string)
	

Systemd unit name (if any) of the process the journal entry
 originates from.

	$SystemdUserUnit (type: string)
	

Systemd user session unit name (if any) of the process the
 journal entry originates from.

	$Transport (type: string)
	

Transport of the entry to the journal service. Available values are:
 audit, driver, syslog, journal, stdout, kernel.

	$User (type: string)
	

User ID of the process the journal entry originates from.

Examples

Example 93. Using the im_systemd module to read the systemd journal

In this example, NXLog reads the recent journal messages.

nxlog.conf

<Input systemd>
 Module im_systemd
 ReadFromLast TRUE
</Input>

Below is the sample of a systemd journal message after it has been accepted
by the im_systemd module and converted into JSON format using the
xm_json module.

Event sample

{"Severity":"info","SeverityValue":6,"Facility":"auth","FacilityValue":3,
"Message":"Reached target User and Group Name Lookups.","SourceName":"systemd",
"ProcessID":1,"BootID":"179e1f0a40c64b6cb126ed97278aef89",
"MachineID":"0823d4a95f464afeb0021a7e75a1b693","Hostname":"user",
"Transport":"kernel","EventReceivedTime":"2020-02-05T14:46:09.809554+00:00",
"SourceModuleName":"systemd","SourceModuleType":"im_systemd"}

TCP (im_tcp)

This module accepts TCP connections on the configured address and
port. It can handle multiple simultaneous connections. The TCP
transfer protocol provides more reliable log transmission than UDP.
If security is a concern, consider using the im_ssl module
instead.

	

	
This module provides no access control. Firewall rules can be
 used to deny connections from certain hosts.

Configuration

The im_tcp module accepts the following directives in addition to the
common module directives.

	Host
	
The module will accept connections on this IP address or DNS
hostname. For security, the default listen address is localhost (the
localhost loopback address is not accessible from the outside). To receive
logs from remote hosts, the address specified here must be accessible. The
any address 0.0.0.0 is commonly used here.

	Port
	
The module will listen for incoming connections on this port
number. The default port is 514 if this directive is not specified.

Fields

The following fields are used by im_tcp.

	$raw_event (type: string)
	

The received string.

	$MessageSourceAddress (type: string)
	

The IP address of the remote host.

Examples

Example 94. Using the im_tcp Module

With this configuration, NXLog will listen for TCP connections
on port 1514 and write received log messages to file.

nxlog.conf

<Input tcp>
 Module im_tcp
 Host 0.0.0.0
 Port 1514
</Input>

<Output file>
 Module om_file
 File "tmp/output"
</Output>

<Route tcp_to_file>
 Path tcp => file
</Route>

UDP (im_udp)

This module accepts UDP datagrams on the configured address and
port. UDP is the transport protocol of the legacy BSD Syslog as
described in RFC 3164, so this module can be particularly useful to
receive such messages from older devices which do not support other
transports.

	

	
UDP is an unreliable transport protocol, and does not guarantee
 delivery. Messages may not be received or may be truncated. It is
 recommended to use the TCP or SSL transport
 modules instead, if possible.

To reduce the likelihood of message loss, consider:

	
increasing the socket buffer size with SockBufSize,

	
raising the route priority by setting the Priority
directive (to a low number such as 1), and

	
adding a pm_buffer instance.

	

	
This module provides no access control. Firewall rules can be
 used to drop log events from certain hosts.

For parsing Syslog messages, see the pm_transformer
module or the parse_syslog_bsd()
procedure of xm_syslog.

Configuration

The im_udp module accepts the following directives in addition to the
common module directives.

	Host
	
The module will accept messages on this IP address or DNS
hostname. The default is localhost.

	Port
	
The module will listen for incoming connections on this port
number. The default is port 514.

	SockBufSize
	
This optional directive sets the socket buffer size
(SO_RCVBUF) to the value specified. If not set, the operating system
defaults are used. If UDP packet loss is occurring at the kernel
level, setting this to a high value (such as 150000000) may
help. On Windows systems the default socket buffer size is extremely
low, and using this option is highly recommended.

	UseRecvmmsg
	
This boolean directive specifies that the recvmmsg() system
call should be used, if available, to receive multiple messages per
call to improve performance. The default is TRUE.

Fields

The following fields are used by im_udp.

	$raw_event (type: string)
	

The received string.

	$MessageSourceAddress (type: string)
	

The IP address of the remote host.

Examples

Example 95. Using the im_udp Module

This configuration accepts log messages via UDP and writes them to
file.

nxlog.conf

<Input udp>
 Module im_udp
 Host 192.168.1.1
 Port 514
</Input>

<Output file>
 Module om_file
 File "tmp/output"
</Output>

<Route udp_to_file>
 Path udp => file
</Route>

Unix Domain Sockets (im_uds)

This module allows log messages to be received over a Unix domain
socket. Unix systems traditionally have a /dev/log or similar socket
used by the system logger to accept messages. Applications use the
syslog(3) system call to send messages to the system logger.

	

	
This module supports SOCK_DGRAM type sockets only.

	

	
It is recommended to disable
 FlowControl when this module is
 used to collect local Syslog messages from the /dev/log Unix
 domain socket. Otherwise, if the corresponding Output queue
 becomes full, the syslog() system call will block in any
 programs trying to write to the system log and an unresponsive
 system may result.

For parsing Syslog messages, see the pm_transformer
module or the parse_syslog_bsd()
procedure of xm_syslog.

Configuration

The im_uds module accepts the following directives in addition to the
common module directives.

	UDS
	
This specifies the path of the Unix domain socket. The default
is /dev/log.

	InputType
	
See the InputType directive in the
list of common module directives. This defaults to dgram.

Examples

Example 96. Using the im_uds Module

This configuration will accept logs via the specified socket and write
them to file.

nxlog.conf

<Input uds>
 Module im_uds
 UDS /dev/log
 FlowControl False
</Input>

<Output file>
 Module om_file
 File "/var/log/messages"
</Output>

<Route uds_to_file>
 Path uds => file
</Route>

Processor Modules

Processor modules can be used to process log messages in the log
message path between configured Input and Output modules.

Blocker (pm_blocker)

This module blocks log messages and can be used to simulate a blocked
route. When the module blocks the data flow, log messages are first
accumulated in the buffers, and then the flow control mechanism pauses
the input modules. Using the block()
procedure, it is possible to programmatically stop or resume the data
flow. It can be useful for real-world scenarios as well as
testing. See the examples below. When the module starts, the blocking
mode is disabled by default (it operates like pm_null
would).

Configuration

The pm_blocker module accepts only the common
module directives.

Functions

The following functions are exported by pm_blocker.

	boolean is_blocking()
	

Return TRUE if the module is currently blocking the data flow, FALSE
otherwise.

Procedures

The following procedures are exported by pm_blocker.

	block(boolean mode);
	

When mode is TRUE, the module will block. A block(FALSE) should be
called from a Schedule block or another module, it might not get
invoked if the queue is already full.

Examples

Example 97. Using the pm_blocker Module

In this example messages are received over UDP and forwarded to
another host via TCP. The log data is forwarded during non-working
hours (between 7pm and 8am). During working hours, the data is
buffered on the disk.

nxlog.conf

<Input udp>
 Module im_udp
 Host 0.0.0.0
 Port 1514
</Input>

<Processor buffer>
 Module pm_buffer
 # 100 MB disk buffer
 MaxSize 102400
 Type disk
</Processor>

<Processor blocker>
 Module pm_blocker
 <Schedule>
 When 0 8 * * *
 Exec blocker->block(TRUE);
 </Schedule>
 <Schedule>
 When 0 19 * * *
 Exec blocker->block(FALSE);
 </Schedule>
</Processor>

<Output tcp>
 Module om_tcp
 Host 192.168.1.1
 Port 1514
</Output>

<Route udp_to_tcp>
 Path udp => buffer => blocker => tcp
</Route>

Buffer (pm_buffer)

Messages received over UDP may be dropped by the operating system if
packets are not read from the message buffer fast enough. Some logging
subsystems using a small circular buffer can overwrite old logs in the
buffer if it is not read, also resulting in loss of log
data. Buffering can help in such situations.

The pm_buffer module supports disk- and memory-based log message
buffering. If both are required, multiple pm_buffer instances can be
used with different settings. Because a memory buffer can be faster,
though its size is limited, combining memory and disk based buffering
can be a good idea if buffering is frequently used.

The disk-based buffering mode stores the log message data in chunks.
When all the data is successfully forwarded from a chunk, it is then
deleted in order to save disk space.

	

	
Using pm_buffer is only recommended when there is a chance of
 message loss. The built-in flow control in NXLog ensures
 that messages will not be read by the input module until the
 output side can send, store, or forward. When reading from files
 (with im_file) or the Windows EventLog (with
 im_mseventlog or
 im_msvistalog) it is rarely necessary to use
 the pm_buffer module unless log rotation is used. During a
 rotation, there is a possibility of dropping some data while the
 output module (im_tcp, for example) is being blocked.

Configuration

The pm_buffer module accepts the following directives in addition to the
common module directives. The
MaxSize and Type
directives are required.

	MaxSize
	
This mandatory directive specifies the size of the buffer in
kilobytes.

	Type
	
This directive can be set to either Mem or Disk to select
memory- or disk-based buffering.

	Directory
	
This directory will be used to store the disk buffer file
chunks. This is only valid if Type is set
to Disk.

	WarnLimit
	
This directive specifies an optional limit, smaller than
MaxSize, which will trigger a warning
message when reached. The log message will not be generated again
until the buffer size drops to half of WarnLimit and reaches it
again in order to protect against a warning message flood.

Functions

The following functions are exported by pm_buffer.

	integer buffer_count()
	

Return the number of log messages held in the memory buffer.

	integer buffer_size()
	

Return the size of the memory buffer in bytes.

Examples

Example 98. Using a Memory Buffer to Protect Against UDP Message Loss

This configuration accepts log messages via UDP and forwards them
via TCP. An intermediate memory-based buffer allows the
im_udp module instance to continue accepting messages even
if the om_tcp output stops working (caused by downtime of
the remote host or network issues, for example).

nxlog.conf

<Input udp>
 Module im_udp
 Host 0.0.0.0
 Port 514
</Input>

<Processor buffer>
 Module pm_buffer
 # 1 MB buffer
 MaxSize 1024
 Type Mem
 # warn at 512k
 WarnLimit 512
</Processor>

<Output tcp>
 Module om_tcp
 Host 192.168.1.1
 Port 1514
</Output>

<Route udp_to_tcp>
 Path udp => buffer => tcp
</Route>

Event Correlator (pm_evcorr)

The pm_evcorr module provides event correlation functionality in
addition to the already available NXLog language features such
as variables and statistical counters
which can be also used for event correlation purposes.

This module was greatly inspired by the Perl based correlation tool
SEC. Some of the rules of the
pm_evcorr module were designed to mimic those available in SEC. This
module aims to be a better alternative to SEC with the following
advantages:

	
The correlation rules in SEC work with the current time. With
pm_evcorr it is possible to specify a time field which is used for
elapsed time calculation making offline event correlation possible.

	
SEC uses regular expressions extensively, which can become quite
slow if there are many correlation rules. In contrast, this module
can correlate pre-processed messages using fields from, for example,
the pattern matcher and Syslog parsers
without requiring the use of regular expressions (though these are
also available for use by correlation rules). Thus testing
conditions can be significantly faster when simple comparison is
used instead of regular expression based pattern matching.

	
This module was designed to operate on fields, making it possible to
correlate structured logs in addition to simple free-form log
messages.

	
Most importantly, this module is written in C, providing performance
benefits (where SEC is written in pure Perl).

The rulesets of this module can use a context. A context is an
expression which is evaluated during runtime to a value and the
correlation rule is checked in the context of this value. For example,
to count the number of failed logins per user and alert if the failed
logins exceed 3 for the user, the $AccountName would be used as the
context. There is a separate context storage for each correlation rule
instance. For global contexts accessible from all rule instances, see
module variables and statistical
counters.

Configuration

The pm_evcorr module accepts the following directives in addition to
the common module directives.

The pm_evcorr configuration contains correlation rules which are evaluated for
each log message processed by the module. Currently there are five rule types
supported by pm_evcorr: Absence,
Pair, Simple,
Suppressed, and
Thresholded. These rules are defined in
configuration blocks. The rules are evaluated in the order they are
defined. For example, a correlation rule can change a state, variable, or
field which can be then used by a later rule. File
inclusion can be useful to store correlation rules in a separate file.

	Absence
	
This rule type does the opposite of
Pair. When
TriggerCondition
evaluates to TRUE, this rule type will wait
Interval seconds for
RequiredCondition to
become TRUE. If it does not become TRUE, it executes the
statement(s) in the Exec
directive(s).

	Context
	
This optional directive specifies an expression to be used as the
context. It must evaluate to a value. Usually a field is specified here.

	Exec
	
One or more Exec directives must be specified, each taking a
statement as argument.

	

	
The evaluation of this Exec is not triggered by a log event; thus it
 does not make sense to use log data related operations such as accessing
 fields.

	Interval
	
This mandatory directive takes an integer argument specifying the
number of seconds to wait for
RequiredCondition to become
TRUE. Its value must be greater than 0. The
TimeField directive is used to calculate
time.

	RequiredCondition
	
This mandatory directive takes an expression as argument
which must evaluate to a boolean value. When this
evaluates to TRUE after
TriggerCondition evaluated to
TRUE within Interval seconds, the
statement(s) in the Exec directive(s) are
NOT executed.

	TriggerCondition
	
This mandatory directive takes an expression as argument
which must evaluate to a boolean value.

	Pair
	
When
TriggerCondition
evaluates to TRUE, this rule type will wait
Interval seconds for
RequiredCondition to
become TRUE. It then executes the statement(s) in the
Exec directive(s).

	Context
	
This optional directive specifies an expression to be used as the
context. It must evaluate to a value. Usually a field is specified here.

	Exec
	
One or more Exec directives must be specified, each taking a
statement as argument.

	Interval
	
This directive takes an integer argument specifying the number of
seconds to wait for
RequiredCondition to become
TRUE. If this directive is 0 or not specified, the rule will wait
indefinitely for
RequiredCondition to become
TRUE. The TimeField directive is used to
calculate time.

	RequiredCondition
	
This mandatory directive takes an expression as argument
which must evaluate to a boolean value. When this
evaluates to TRUE after
TriggerCondition evaluated to
TRUE within Interval seconds, the
statement(s) in the Exec directive(s) are
executed.

	TriggerCondition
	
This mandatory directive takes an expression as argument
which must evaluate to a boolean value.

	Simple
	
This rule type is essentially the same as the
Exec directive supported by all
modules. Because Execs are evaluated before
the correlation rules, the Simple rule was also needed to be able
to evaluate a statement as the other rules do, following the rule
order. The Simple block has one directive also with the same name.

	Exec
	
One or more Exec directives must be specified, with a
statement as argument.

	Stop
	
This rule will stop evaluating successive rules if the
Condition evaluates to TRUE. The
optional Exec directive will be
evaluated in this case.

	Condition
	
This mandatory directive takes an expression as argument which
must evaluate to a boolean value. When it evaluates to
TRUE, the correlation rule engine will stop checking any further rules.

	Exec
	
One or more Exec directives may be specified, each taking a
statement as argument. This will be evaluated when the
specified Condition is satisfied. This
directive is optional.

	Suppressed
	
This rule type matches the given condition. If the
condition evaluates to TRUE, the statement specified with the
Exec directive is
evaluated. The rule will then ignore any log messages for the time
specified with Interval
directive. This rule is useful for avoiding creating multiple alerts
in a short period when a condition is satisfied.

	Condition
	
This mandatory directive takes an expression as argument which
must evaluate to a boolean value.

	Context
	
This optional directive specifies an expression to be used as the
context. It must evaluate to a value. Usually a field is specified here.

	Exec
	
One or more Exec directives must be specified, each taking
a statement as argument.

	Interval
	
This mandatory directive takes an integer argument specifying the
number of seconds to ignore the condition. The
TimeField directive is used to calculate
time.

	Thresholded
	
This rule type will execute the statement(s) in the
Exec directive(s) if the
Condition evaluates to
TRUE Threshold or more
times during the Interval
specified. The advantage of this rule over the use of
statistical counters is that the time window is
dynamic and shifts as log messages are processed.

	Condition
	
This mandatory directive takes an expression as argument which
must evaluate to a boolean value.

	Context
	
This optional directive specifies an expression to be used as the
context. It must evaluate to a value. Usually a field is specified here.

	Exec
	
One or more Exec directives must be specified, each taking
a statement as argument.

	Interval
	
This mandatory directive takes an integer argument specifying a
time window for Condition to
become TRUE. Its value must be greater than 0. The
TimeField directive is used to calculate
time. This time window is dynamic, meaning that it will shift.

	Threshold
	
This mandatory directive takes an integer argument specifying the
number of times Condition must
evaluate to TRUE within the given time
Interval. When the threshold is
reached, the module executes the statement(s) in the
Exec directive(s).

	ContextCleanTime
	
When a Context is used in the correlation rules,
these must be purged from memory after they are expired, otherwise
using too many context values could result in a high memory
usage. This optional directive specifies the interval between
context cleanups, in seconds. By default a 60 second cleanup
interval is used if any rules use a Context and this directive is
not specified.

	TimeField
	
This specifies the name of the field to
use for calculating elapsed time, such as EventTime. The name of
the field must be specified without the leading dollar sign
($). If this parameter is not specified, the current time is
assumed. This directive makes it possible to accurately correlate
events based on the event time recorded in the logs and to do
non-real-time event correlation.

Examples

Example 99. Correlation Rules

This following configuration sample contains a rule for each type.

nxlog.conf

<Input filein>
 Module im_file
 File "modules/processor/evcorr/testinput_evcorr2.txt"
 Exec if ($raw_event =~ /^(\d\d\d\d-\d\d-\d\d \d\d:\d\d:\d\d) (.+)/) { \
 $EventTime = parsedate($1); \
 $Message = $2; \
 $raw_event = $Message; \
 }
</Input>

<Input internal>
 Module im_internal
 Exec $raw_event = $Message;
 Exec $EventTime = 2010-01-01 00:01:00;
</Input>

<Output fileout>
 Module om_file
 File 'tmp/output'
</Output>

<Processor evcorr>
 Module pm_evcorr
 TimeField EventTime

 <Simple>
 Exec if $Message =~ /^simple/ $raw_event = "got simple";
 </Simple>

 <Suppressed>
 # Match input event and execute an action list, but ignore the
 # following matching events for the next $Interval seconds.
 Condition $Message =~ /^suppressed/
 Interval 30
 Exec $raw_event = "suppressing..";
 </Suppressed>

 <Pair>
 # If TriggerCondition is true, wait Interval seconds for
 # RequiredCondition to be true and then do the Exec. If Interval is
 # 0, there is no window on matching.
 TriggerCondition $Message =~ /^pair-first/
 RequiredCondition $Message =~ /^pair-second/
 Interval 30
 Exec $raw_event = "got pair";
 </Pair>

 <Absence>
 # If TriggerCondition is true, wait Interval seconds for
 # RequiredCondition to be true. If RequiredCondition does not become
 # true within the specified interval then do the Exec.
 TriggerCondition $Message =~ /^absence-trigger/
 RequiredCondition $Message =~ /^absence-required/
 Interval 10
 Exec log_info("'absence-required' not received within 10 secs");
 </Absence>

 <Thresholded>
 # If the number of events exceeds the given threshold within the
 # interval do the Exec. Same as SingleWithThreshold in SEC.
 Condition $Message =~ /^thresholded/
 Threshold 3
 Interval 60
 Exec $raw_event = "got thresholded";
 </Thresholded>

 <Stop>
 Condition $EventTime < 2010-01-02 00:00:00
 Exec log_debug("got stop");
 </Stop>

 <Simple>
 # This will be rewritten only if the previous Stop condition is
 # FALSE.
 Exec $raw_event = "rewritten";
 </Simple>

</Processor>

<Route corr>
 Path filein, internal => evcorr => fileout
</Route>

Input Sample

2010-01-01 00:00:00 Not simple
2010-01-01 00:00:01 suppressed1 - Suppress kicks in, will log 'suppressing..'
2010-01-01 00:00:10 simple1
2010-01-01 00:00:12 pair-first - now look for pair-second
2010-01-01 00:00:13 thresholded1
2010-01-01 00:00:15 thresholded2
2010-01-01 00:00:19 simple2
2010-01-01 00:00:20 thresholded3 - will log 'got thresholded'
2010-01-01 00:00:21 suppressed2 - suppressed and logged as is
2010-01-01 00:00:22 pair-second - will log 'got pair'
2010-01-01 00:00:23 suppressed3 - suppressed and logged as is
2010-01-01 00:00:25 pair-first
2010-01-01 00:00:26 absence-trigger
2010-01-01 00:00:29 absence-required - will not log 'got absence'
2010-01-01 00:00:46 absence-trigger
2010-01-01 00:00:56 pair-second - will not log 'got pair' because it is over the interval
2010-01-01 00:00:57 absence-required - will log an additional 'absence-required not received within 10 secs'
2010-01-02 00:00:00 this will be rewritten
2010-01-02 00:00:10 this too

Output Sample

Not simple
suppressing..
got simple
pair-first - now look for pair-second
thresholded1
thresholded2
got simple
got thresholded
suppressed2 - suppressed and logged as is
got pair
suppressed3 - suppressed and logged as is
pair-first
absence-trigger
absence-required - will not log 'got absence'
absence-trigger
pair-second - will not log 'got pair' because it is over the interval
absence-required - will log an additional 'absence-required not received within 10 secs'
rewritten
rewritten
'absence-required' not received within 10 secs

De-Duplicator (pm_norepeat)

This module can be used to filter out repeating messages. Like Syslog
daemons, this module checks the previous message against the
current. If they match, the current message is dropped. The module
waits one second for duplicated messages to arrive. If duplicates are
detected, the first message is forwarded, the rest are dropped, and a
message containing "last message repeated n times" is sent instead.

Configuration

The pm_norepeat module accepts the following directives in addition to
the common module directives.

	CheckFields
	
This optional directive takes a comma-separated list of
field names which are used to compare log messages. Only the fields
listed here are compared, the others are ignored. For example, the
$EventTime field will be different in repeating messages, so this
field should not be used in the comparison. If this directive is not
specified, the default field to be checked is $Message.

Fields

The following fields are used by pm_norepeat.

	$raw_event (type: string)
	

A string containing the last message repeated n times
	message.

	$EventTime (type: datetime)
	

The time of the last event or the current time if EventTime
	was not present in the last event.

	$Message (type: string)
	

The same value as $raw_event.

	$ProcessID (type: integer)
	

The process ID of the NXLog process.

	$Severity (type: string)
	

The severity name: INFO.

	$SeverityValue (type: integer)
	

The INFO severity level value: 2.

	$SourceName (type: string)
	

Set to nxlog.

Examples

Example 100. Filtering Out Duplicated Messages

This configuration reads log messages from the socket. The
$Hostname, $SourceName, and $Message fields are used to detect
duplicates. Then the messages are written to file.

nxlog.conf

<Input uds>
 Module im_uds
 UDS /dev/log
</Input>

<Processor norepeat>
 Module pm_norepeat
 CheckFields Hostname, SourceName, Message
</Processor>

<Output file>
 Module om_file
 File "/var/log/messages"
</Output>

<Route uds_to_file>
 Path uds => norepeat => file
</Route>

Null (pm_null)

This module does not do any special processing, so basically it does
nothing. Yet it can be used with the Exec and
Schedule directives, like any other module.

The pm_null module accepts only the common
module directives.

See this example for usage.

Pattern Matcher (pm_pattern)

This module makes it possible to execute pattern matching with a
pattern database file in XML format. Using this module is more
efficient than having NXLog regular expression rules listed in
Exec directives, because the pm_pattern module
was designed in such a way that patterns do not need to be matched
linearly. In addition, the module does an automatic on-the-fly pattern
reordering internally for further speed improvements and has a feature
which can be used to tag messages with additional fields useful for
message classification.

There are other techniques such as the radix tree which solve the
linearity problem; the drawback is that usually these require the user
to learn a special syntax for specifying patterns. If the log message
is already parsed and is not treated as single line of message, then
it is possible to process only a subset of the patterns which
partially solves the linearity problem. With other performance
improvements employed within the pm_pattern module, its speed can
compare to the other techniques. Yet the pm_pattern module uses
regular expressions which are familiar to users and can easily be
migrated from other tools.

Traditionally, pattern matching on log messages has employed a
technique where the log message was one string and the pattern
(regular expression or radix tree based pattern) was executed
against it. To match patterns against logs which contain structured
data (such as the Windows EventLog), this structured data (the fields
of the log) must be converted to a single string. This is a simple but
inefficient method used by many tools.

The NXLog patterns defined in the XML pattern database file
can contain more than one field. This allows multi-dimensional pattern
matching. Thus with NXLog’s pm_pattern module there is no need
to convert all fields into a single string as it can work with
multiple fields.

Patterns can be grouped together under pattern groups. Pattern groups
serve an optimization purpose. The group can have an optional
matchfield block which can check a condition. If the condition (such
as $SourceName matches sshd) is satisfied, the pm_pattern module
will descend into the group and check each pattern against the log. If
the pattern group’s condition did not match ($SourceName was not
sshd), the module can skip all patterns in the group without having
to check each pattern individually.

When the pm_pattern module finds a matching pattern, the $PatternID
and $PatternName fields are set on the log message. These can be
used later in conditional processing and correlation rules of the
pm_evcorr module, for example.

	

	

The pm_pattern module does not process all patterns. It exits after
the first matching pattern is found. This means that at most one
pattern can match a log message. Multiple patterns that can match the
same subset of logs should be avoided. For example, with two regular
expression patterns ^\d+ and ^\d\d, the second may never be
matched because of the first. The internal order of patterns and
pattern groups is changed dynamically by pm_pattern. Patterns with the
highest match count are placed and tried first. In addition to
performance optimization, setting the value of $PatternID would be
problematic with multiple values because the language does not support
arrays.

For a strictly linearly executing pattern matcher, see the
Exec directive.

Configuration

The pm_pattern module accepts the following directives in addition to
the common module directives.

	PatternFile
	
This mandatory directive specifies the name of the
pattern database file.

Fields

The following fields are used by pm_pattern.

	$PatternID (type: integer)
	

The ID number of the pattern which matched the message.

	$PatternName (type: string)
	

The name of the pattern which matched the message.

Examples

Example 101. Using the pm_pattern Module

This configuration reads BSD Syslog messages from the socket,
processes the messages with a pattern file, and then writes them to
file in JSON format.

nxlog.conf

<Extension json>
 Module xm_json
</Extension>

<Extension syslog>
 Module xm_syslog
</Extension>

<Input uds>
 Module im_uds
 UDS /dev/log
 Exec parse_syslog_bsd();
</Input>

<Processor pattern>
 Module pm_pattern
 PatternFile /var/lib/nxlog/patterndb.xml
</Processor>

<Output file>
 Module om_file
 File "/var/log/out"
 Exec to_json();
</Output>

<Route uds_to_file>
 Path uds => pattern => file
</Route>

The following pattern database contains two patterns to match SSH
authentication messages. The patterns are under a group named ssh
which checks whether the $SourceName field is sshd and only tries
to match the patterns if the logs are indeed from sshd. The patterns
both extract AuthMethod, AccountName, and SourceIP4Address from
the log message when the pattern matches the log. Additionally
TaxonomyStatus and TaxonomyAction are set. The second pattern
utilizes the Exec block, which is evaluated
when the pattern matches.

	

	
For this pattern to work, the logs must be parsed with
 parse_syslog() prior to
 processing by the pm_pattern module (as in the above example),
 because it uses the
 $SourceName and $Message fields.

patterndb.xml

<?xml version='1.0' encoding='UTF-8'?>
<patterndb>
 <created>2010-01-01 01:02:03</created>
 <version>42</version>

 <group>
 <name>ssh</name>
 <id>42</id>
 <matchfield>
 <name>SourceName</name>
 <type>exact</type>
 <value>sshd</value>
 </matchfield>

 <pattern>
 <id>1</id>
 <name>ssh auth success</name>

 <matchfield>
 <name>Message</name>
 <type>regexp</type>
 <!-- Accepted publickey for nxlogfan from 192.168.1.1 port 4242 ssh2 -->
 <value>^Accepted (\S+) for (\S+) from (\S+) port \d+ ssh2</value>
 <capturedfield>
	<name>AuthMethod</name>
	<type>string</type>
 </capturedfield>
 <capturedfield>
	<name>AccountName</name>
	<type>string</type>
 </capturedfield>
 <capturedfield>
	<name>SourceIP4Address</name>
 <type>string</type>
 </capturedfield>
 </matchfield>

 <set>
 <field>
 <name>TaxonomyStatus</name>
 <value>success</value>
 <type>string</type>
 </field>
 <field>
 <name>TaxonomyAction</name>
 <value>authenticate</value>
 <type>string</type>
 </field>
 </set>
 </pattern>

 <pattern>
 <id>2</id>
 <name>ssh auth failure</name>

 <matchfield>
 <name>Message</name>
 <type>regexp</type>
 <value>^Failed (\S+) for invalid user (\S+) from (\S+) port \d+ ssh2</value>

 <capturedfield>
	<name>AuthMethod</name>
	<type>string</type>
 </capturedfield>
 <capturedfield>
	<name>AccountName</name>
	<type>string</type>
 </capturedfield>
 <capturedfield>
	<name>SourceIP4Address</name>
 <type>string</type>
 </capturedfield>
 </matchfield>

 <set>
 <field>
 <name>TaxonomyStatus</name>
 <value>failure</value>
 <type>string</type>
 </field>
 <field>
 <name>TaxonomyAction</name>
 <value>authenticate</value>
 <type>string</type>
 </field>
 </set>

 <exec>
 $TestField = 'test';
 </exec>
 <exec>
 $TestField = $Testfield + 'value';
 </exec>
 </pattern>

 </group>

</patterndb>

Format Converter (pm_transformer)

The pm_transformer module provides parsers for BSD Syslog, IETF
Syslog, CSV, JSON, and XML formatted data and can also convert
between. This module is now obsoleted by the functions and procedures
provided by the following modules: xm_syslog,
xm_csv, xm_json, and xm_xml. Using
this module can be slightly faster than calling these procedures from
an Exec directive.

Configuration

The pm_transformer module accepts the following directives in addition to the
common module directives. For conversion to occur,
the InputFormat and
OutputFormat directives must be
specified.

	InputFormat
	
This directive specifies the input format of the
$raw_event field so that it is further parsed into fields. If this
directive is not specified, no parsing will be performed.

	CSV
	
Input is parsed as a comma-separated list of values. See
xm_csv for similar functionality. The input fields must be
defined by CSVInputFields.

	JSON
	
Input is parsed as JSON. This does the same as the
parse_json() procedure.

	syslog_bsd
	
Same as
syslog_rfc3164.

	syslog_ietf
	
Same as
syslog_rfc5424.

	syslog_rfc3164
	
Input is parsed in the BSD Syslog format as defined by
RFC 3164. This does the same as the
parse_syslog_bsd() procedure.

	syslog_rfc5424
	
Input is parsed in the IETF Syslog format as defined by
RFC 5424. This does the same as the
parse_syslog_ietf() procedure.

	XML
	
Input is parsed as XML. This does the same as the
parse_xml() procedure.

	OutputFormat
	
This directive specifies the output transformation. If
this directive is not specified, fields are not converted and
$raw_event is left unmodified.

	CSV
	
Output in $raw_event is formatted as a comma-separated list of
values. See xm_csv for similar functionality.

	JSON
	
Output in $raw_event is formatted as JSON. This does the same as the
to_json() procedure.

	syslog_bsd
	
Same as
syslog_rfc3164.

	syslog_ietf
	
Same as
syslog_rfc5424.

	syslog_rfc3164
	
Output in $raw_event is formatted in the BSD Syslog format
as defined by RFC 3164. This does the same as the
to_syslog_bsd() procedure.

	syslog_rfc5424
	
Output in $raw_event is formatted in the IETF Syslog
format as defined by RFC 5424. This does the same as the
to_syslog_ietf() procedure.

	syslog_snare
	
Output in $raw_event is formatted in the SNARE Syslog
format. This does the same as the
to_syslog_snare() procedure. This should
be used in conjunction with the im_mseventlog or
im_msvistalog module to produce an output compatible with
Snare Agent for Windows.

	XML
	
Output in $raw_event is formatted in XML. This does the same as the
to_xml() procedure.

	CSVInputFields
	
This is a comma-separated list of fields which will
be set from the input parsed. The field names must have the dollar
sign ($) prepended.

	CSVInputFieldTypes
	
This optional directive specifies the list of
types corresponding to the field names defined in
CSVInputFields. If
specified, the number of types must match the number of field names
specified with
CSVInputFields. If this
directive is omitted, all fields will be stored as
strings. This directive has no effect on the
fields-to-CSV conversion.

	CSVOutputFields
	
This is a comma-separated list of message fields
which are placed in the CSV lines. The field names must have the
dollar sign ($) prepended.

Examples

Example 102. Using the pm_transformer Module

This configuration reads BSD Syslog messages from file and writes them
to another file in CSV format.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Input filein>
 Module im_file
 File "tmp/input"
</Input>

<Processor transformer>
 Module pm_transformer
 InputFormat syslog_rfc3164
 OutputFormat csv
 CSVOutputFields $facility, $severity, $timestamp, $hostname, \
 $application, $pid, $message
</Processor>

<Output fileout>
 Module om_file
 File "tmp/output"
</Output>

<Route filein_to_fileout>
 Path filein => transformer => fileout
</Route>

Output Modules

Output modules are responsible for writing event log data to various
destinations.

Blocker (om_blocker)

This module is mostly for testing purposes. It will block log messages
in order to simulate a blocked route, like when a network transport
output module such as om_tcp blocks because of a network
problem.

The sleep() procedure can also be used for testing
by simulating log message delays.

Configuration

The om_blocker module accepts only the common module
directives.

Examples

Example 103. Testing Buffering With the om_blocker Module

Because the route in this configuration is blocked, this will test the
behavior of the configured memory-based buffer.

nxlog.conf

<Input uds>
 Module im_uds
 UDS /dev/log
</Input>

<Processor buffer>
 Module pm_buffer
 WarnLimit 512
 MaxSize 1024
 Type Mem
</Processor>

<Output blocker>
 Module om_blocker
</Output>

<Route uds_to_blocker>
 Path uds => buffer => blocker
</Route>

DBI (om_dbi)

The om_dbi module allows NXLog to store log data in external
databases. This module utilizes the
libdbi database abstraction library,
which supports various database engines such as MySQL, PostgreSQL,
MSSQL, Sybase, Oracle, SQLite, and Firebird. An INSERT statement can
be specified, which will be executed for each log, to insert into any
table schema.

	

	
The im_dbi and om_dbi modules support GNU/Linux only
 because of the libdbi library. The im_odbc and
 om_odbc modules provide native database access on
 Windows (available only in NXLog Enterprise Edition).

	

	
libdbi needs drivers to access the
 database engines. These are in the libdbd-* packages on Debian
 and Ubuntu. CentOS 5.6 has a libdbi-drivers RPM package, but
 this package does not contain any driver binaries under
 /usr/lib64/dbd. The drivers for both MySQL and PostgreSQL are in
 libdbi-dbd-mysql. If these are not installed, NXLog will
 return a libdbi driver initialization error.

Configuration

The om_dbi module accepts the following directives in addition to the
common module directives.

	Driver
	
This mandatory directive specifies the name of the libdbi
driver which will be used to connect to the database. A DRIVER name
must be provided here for which a loadable driver module exists
under the name libdbdDRIVER.so (usually under /usr/lib/dbd/). The
MySQL driver is in the libdbdmysql.so file.

	SQL
	
This directive should specify the INSERT statement to be
executed for each log message. The field names (names beginning with
$) will be replaced with the value they
contain. String types will be quoted.

	Option
	
This directive can be used to specify additional driver
options such as connection parameters. The manual of the libdbi
driver should contain the options available for use here.

Examples

These two examples are for the plain Syslog fields. Other fields
generated by parsers, regular expression rules, the
pm_pattern pattern matcher module, or input modules,
can also be used. Notably, the im_msvistalog and
im_mseventlog modules generate different fields than
those shown in these examples.

Example 104. Storing Syslog in a PostgreSQL Database

Below is a table schema which can be used to store Syslog data:

CREATE TABLE log (
 id serial,
 timestamp timestamp not null,
 hostname varchar(32) default NULL,
 facility varchar(10) default NULL,
 severity varchar(10) default NULL,
 application varchar(10) default NULL,
 message text,
 PRIMARY KEY (id)
);

The following configuration accepts log messages via TCP and uses
libdbi to insert log messages into the database.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Input tcp>
 Module im_tcp
 Port 1234
 Host 0.0.0.0
 Exec parse_syslog_bsd();
</Input>

<Output dbi>
 Module om_dbi
 SQL INSERT INTO log (facility, severity, hostname, timestamp, \
 application, message) \
 VALUES ($SyslogFacility, $SyslogSeverity, $Hostname, '$EventTime', \
 $SourceName, $Message)
 Driver pgsql
 Option host 127.0.0.1
 Option username dbuser
 Option password secret
 Option dbname logdb
</Output>

<Route tcp_to_dbi>
 Path tcp => dbi
</Route>

Example 105. Storing Logs in a MySQL Database

This configuration reads log messages from the socket and inserts them
into a MySQL database.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Input uds>
 Module im_uds
 UDS /dev/log
 Exec parse_syslog_bsd();
</Input>

<Output dbi>
 Module om_dbi
 SQL INSERT INTO log (facility, severity, hostname, timestamp, \
 application, message) \
 VALUES ($SyslogFacility, $SyslogSeverity, $Hostname, '$EventTime', \
 $SourceName, $Message)
 Driver mysql
 Option host 127.0.0.1
 Option username mysql
 Option password mysql
 Option dbname logdb
</Output>

<Route uds_to_dbi>
 Path uds => dbi
</Route>

Program (om_exec)

This module will execute a program or script on startup and write
(pipe) log data to its standard input. Unless
OutputType is set to something else,
only the contents of the $raw_event field are sent over the
pipe. The execution of the program or script will terminate when the
module is stopped, which usually happens when NXLog exits and
the pipe is closed.

	

	
The program or script is started when NXLog starts and
 must not exit until the module is stopped. To invoke a program
 or script for each log message, use xm_exec instead.

Configuration

The om_exec module accepts the following directives in addition to the
common module directives.
The Command directive is required.

	Command
	
This mandatory directive specifies the name of the
program or script to be executed.

	Arg
	
This is an optional parameter. Arg can be specified
multiple times, once for each argument that needs to be passed to
the Command. Note that specifying
multiple arguments with one Arg directive, with arguments
separated by spaces, will not work (the
Command will receive it as one argument).

Examples

Example 106. Piping Logs to an External Program

With this configuration, NXLog will start the specified
command, read logs from socket, and write those logs to the standard
input of the command.

nxlog.conf

<Input uds>
 Module im_uds
 UDS /dev/log
</Input>

<Output someprog>
 Module om_exec
 Command /usr/bin/someprog
 Arg -
</Output>

<Route uds_to_someprog>
 Path uds => someprog
</Route>

Files (om_file)

This module can be used to write log messages to a file.

Configuration

The om_file module accepts the following directives in addition to the
common module directives.
The File directive is required.

	File
	
This mandatory directive specifies the name of the output file
to open. It must be a string type
expression. If the expression in the File
directive is not a constant string (it contains functions, field
names, or operators), it will be evaluated before each event is
written to the file (and after the Exec is
evaluated). Note that the filename must be quoted to be a valid
string literal, unlike in other directives which take a filename
argument. For relative filenames, note that NXLog changes
its working directory to "/" unless the global
SpoolDir is set to something else.

Below are three variations for specifying the same output file on a
Windows system:

File 'C:\logs\logmsg.txt'
File "C:\\logs\\logmsg.txt"
File 'C:/logs/logmsg.txt'

	CreateDir
	
If set to TRUE, this optional boolean directive instructs
the module to create the output directory before opening the file
for writing if it does not exist. The default is FALSE.

	OutputType
	
See the OutputType directive in the
list of common module directives. If this directive is not specified
the default is LineBased.

	Sync
	
This optional boolean directive instructs the module to sync
the file after each log message is written, ensuring that it is
really written to disk from the buffers. Because this can hurt
performance, the default is FALSE.

	Truncate
	
This optional boolean directive instructs the module to
truncate the file before each write, causing only the most recent
log message to be saved. The default is FALSE: messages are appended
to the output file.

Functions

The following functions are exported by om_file.

	string file_name()
	

Return the name of the currently open file which was specified using
the File directive. Note that
this will be the old name if the filename changes dynamically; for the
new name, use the expression specified for the
File directive instead of using
this function.

	integer file_size()
	

Return the size of the currently open output file in bytes. Returns
undef if the file is not open. This can happen if
File is not a string literal
expression and there was no log message.

Procedures

The following procedures are exported by om_file.

	reopen();
	

Reopen the current file. This procedure should be called if the file
has been removed or renamed, for example with the
file_cycle(),
file_remove(), or
file_rename() procedures of
the xm_fileop module. This does not need to be called after
rotate_to() because that
procedure reopens the file automatically.

	rotate_to(string filename);
	

Rotate the current file to the filename specified. The module will
then open the original file specified with the
File directive. Note that the
rename(2) system call is used internally which does not support moving
files across different devices on some platforms. If this is a
problem, first rotate the file on the same device. Then use the
xm_exec exec_async() procedure
to copy it to another device or file system, or use the xm_fileop
file_copy() procedure.

Examples

Example 107. Storing Raw Syslog Messages into a File

This configuration reads log messages from socket and writes the
messages to file. No additional processing is done.

nxlog.conf

<Input uds>
 Module im_uds
 UDS /dev/log
</Input>

<Output file>
 Module om_file
 File "/var/log/messages"
</Output>

<Route uds_to_file>
 Path uds => file
</Route>

Example 108. File Rotation Based on Size

With this configuration, NXLog accepts log messages via TCP
and parses them as BSD Syslog. A separate output file is used for log
messages from each host. When the output file size exceeds 15 MB, it
will be automatically rotated and compressed.

nxlog.conf

<Extension exec>
 Module xm_exec
</Extension>

<Extension syslog>
 Module xm_syslog
</Extension>

<Input tcp>
 Module im_tcp
 Port 1514
 Host 0.0.0.0
 Exec parse_syslog_bsd();
</Input>

<Output file>
 Module om_file
 File "tmp/output_" + $Hostname + "_" + month(now())
 <Exec>
 if file->file_size() > 15M
 {
 $newfile = "tmp/output_" + $Hostname + "_" +
 strftime(now(), "%Y%m%d%H%M%S");
 file->rotate_to($newfile);
 exec_async("/bin/bzip2", $newfile);
 }
 </Exec>
</Output>

<Route tcp_to_file>
 Path tcp => file
</Route>

HTTP(s) (om_http)

This module will connect to the specified URL
in either plain HTTP or HTTPS mode. Each event is transferred in a
single POST request. The module then waits for a response containing a
successful status code (200, 201, or 202). It will reconnect and retry
the delivery if the remote has closed the connection or a timeout is
exceeded while waiting for the response. This HTTP-level
acknowledgment ensures that no messages are lost during transfer.

Configuration

The om_http module accepts the following directives in addition to the
common module directives.
The URL directive is required.

	URL
	
This mandatory directive specifies the URL where the module
should POST the event data. The module operates in plain HTTP or
HTTPS mode depending on the URL provided, and connects to the
hostname specified in the URL. If the port number is not explicitly
indicated in the URL, it defaults to port 80 for HTTP and port 443 for
HTTPS.

	ContentType
	
This directive sets the Content-Type HTTP header to
the string specified. The Content-Type is set to text/plain by
default.

	HTTPSAllowUntrusted
	
This boolean directive specifies that the
connection should be allowed without certificate verification. If
set to TRUE, the connection will be allowed even if the remote HTTPS
server presents an unknown or self-signed certificate. The default
value is FALSE: the remote HTTPS server must present a trusted
certificate.

	HTTPSCADir
	
This specifies the path to a directory containing
certificate authority (CA) certificates, which will be used to check
the certificate of the remote HTTPS server. The certificate
filenames in this directory must be in the OpenSSL hashed format.

	HTTPSCAFile
	
This specifies the path of the certificate authority
(CA) certificate, which will be used to check the certificate of the
remote HTTPS server.

	HTTPSCertFile
	
This specifies the path of the certificate file to be
used for the HTTPS handshake.

	HTTPSCertKeyFile
	
This specifies the path of the certificate key file
to be used for the HTTPS handshake.

	HTTPSCRLDir
	
This specifies the path to a directory containing
certificate revocation lists (CRLs), which will be consulted when
checking the certificate of the remote HTTPS server. The certificate
filenames in this directory must be in the OpenSSL hashed format.

	HTTPSCRLFile
	
This specifies the path of the certificate revocation
list (CRL) which will be consulted when checking the certificate of
the remote HTTPS server.

	HTTPSKeyPass
	
With this directive, a password can be supplied for the
certificate key file defined in
HTTPSCertKeyFile. This directive
is not needed for passwordless private keys.

Procedures

The following procedures are exported by om_http.

	set_http_request_path(string path);
	

Set the path in the HTTP request to the string specified. This is
useful if the URL is dynamic and parameters such as event ID need to
be included in the URL. Note that the string must be URL encoded if it
contains reserved characters.

Examples

Example 109. Sending Logs over HTTPS

This configuration reads log messages from file and forwards them via
HTTPS.

nxlog.conf

<Input file>
 Module im_file
 File 'input.log'
</Input>

<Output http>
 Module om_http
 URL https://server:8080/
 HTTPSCertFile %CERTDIR%/client-cert.pem
 HTTPSCertKeyFile %CERTDIR%/client-key.pem
 HTTPSCAFile %CERTDIR%/ca.pem
 HTTPSAllowUntrusted FALSE
</Output>

<Route file_to_http>
 Path file => http
</Route>

Null (om_null)

Log messages sent to the om_null module instance are discarded, this
module does not write its output anywhere. It can be useful for
creating a dummy route, for testing purposes, or for
Scheduled NXLog code execution. The
om_null module accepts only the common module
directives. See this example for usage.

Perl (om_perl)

The Perl programming language is widely used for log
processing and comes with a broad set of modules bundled or available
from CPAN. Code can be written more quickly in Perl
than in C, and code execution is safer because exceptions (croak/die)
are handled properly and will only result in an unfinished attempt at
log processing rather than taking down the whole NXLog
process.

This module makes it possible to execute Perl code in an output module
that can handle the data directly in Perl. See also the
im_perl and xm_perl modules.

The module will parse the file specified in the
PerlCode directive when NXLog starts the
module. The Perl code must implement the write_data subroutine which will be
called by the module when there is data to process. This subroutine is called
for each event record and the event record is passed as an argument. To access
event data, the Log::Nxlog Perl module must be included, which provides the
following methods.

	

	
To use the om_perl module on Windows, a separate Perl
 environment must be installed, such as
 Strawberry Perl. Currently, the om_perl module on Windows requires Strawberry Perl 5.28.2.1.

	log_debug(msg)
	
Send the message msg to the internal logger on
DEBUG log level. This method does the same as the
log_debug() procedure in NXLog.

	log_info(msg)
	
Send the message msg to the internal logger on INFO
log level. This method does the same as the
log_info() procedure in NXLog.

	log_warning(msg)
	
Send the message msg to the internal logger on
WARNING log level. This method does the same as the
log_warning() procedure in NXLog.

	log_error(msg)
	
Send the message msg to the internal logger on
ERROR log level. This method does the same as the
log_error() procedure in NXLog.

	get_field(event, key)
	
Retrieve the value associated with the field
named key. The method returns a scalar value if the key exists and
the value is defined, otherwise it returns undef.

For the full NXLog Perl API, see the POD documentation in
Nxlog.pm. The documentation can be read with perldoc Log::Nxlog.

Configuration

The om_perl module accepts the following directives in addition to the
common module directives.

	PerlCode
	
This mandatory directive expects a file containing valid
Perl code. This file is read and parsed by the Perl interpreter.

	

	

On Windows, the Perl script invoked by the PerlCode directive must define
the Perl library paths at the beginning of the script to provide access to the
Perl modules.

nxlog-windows.pl

use lib 'c:\Strawberry\perl\lib';
use lib 'c:\Strawberry\perl\vendor\lib';
use lib 'c:\Strawberry\perl\site\lib';
use lib 'c:\Program Files\nxlog\data';

	Config
	
This optional directive allows you to pass configuration strings
to the script file defined by the PerlCode
directive. This is a block directive and any text enclosed within
<Config></Config> is submitted as a single string literal to the Perl code.

	

	
If you pass several values using this directive (for example,
separated by the \n delimiter) be sure to parse the string correspondingly
inside the Perl code.

	Call
	
This optional directive specifies the Perl subroutine to invoke. With
this directive, you can call only specific subroutines from your Perl code.
If the directive is not specified, the default subroutine write_data is invoked.

Examples

Example 110. Handling Event Data in om_perl

This output module sends events to the Perl script, which simply writes the
data from the $raw_event field into a file.

nxlog.conf

<Output out>
 Module om_perl
 PerlCode modules/output/perl/perl-output.pl
 Call write_data1
</Output>

<Route r>
 Path in => out
</Route>

perl-output.pl

use strict;
use warnings;

use Log::Nxlog;

sub write_data1
{
 my ($event) = @_;
 my $rawevt = Log::Nxlog::get_field($event, 'raw_event');
 open(OUT, '>', 'tmp/output') || die("cannot open tmp/output: $!");
 print OUT $rawevt, "(from perl)", "\n";
 close(OUT);
}

Python (om_python)

This module provides support for forwarding log data with methods written in
Only Python version 3 and its minor releases are currently supported.
See the Python prerequisites for using this module on Windows.

The file specified by the PythonCode directive
should contain a write_data() method which is called by the om_python
module instance. See also the xm_python and
im_python modules.

The Python script should import the nxlog module, and will have access to
the following classes and functions.

	nxlog.log_debug(msg)
	
Send the message msg to the internal logger at DEBUG
log level. This function does the same as the core
log_debug() procedure.

	nxlog.log_info(msg)
	
Send the message msg to the internal logger at INFO
log level. This function does the same as the core
log_info() procedure.

	nxlog.log_warning(msg)
	
Send the message msg to the internal logger at
WARNING log level. This function does the same as the core
log_warning() procedure.

	nxlog.log_error(msg)
	
Send the message msg to the internal logger at ERROR
log level. This function does the same as the core
log_error() procedure.

	class nxlog.Module
	
This class is instantiated by NXLog and can
be accessed via the LogData.module
attribute. This can be used to set or access variables associated with the
module (see the example below).

	class nxlog.LogData
	
This class represents an event. It is instantiated
by NXLog and passed to the write_data() method.

	delete_field(name)
	
This method removes the field name from the event
record.

	field_names()
	
This method returns a list with the names of all the fields
currently in the event record.

	get_field(name)
	
This method returns the value of the field name in the
event.

	set_field(name, value)
	
This method sets the value of field name to
value.

	module
	
This attribute is set to the Module object associated with the
LogData event.

Configuration

The om_python module accepts the following directives in addition to the
common module directives.

	PythonCode
	
This mandatory directive specifies a file containing Python
code. The om_python instance will call a write_data() function which must
accept an nxlog.LogData object as its only
argument.

	Call
	
This optional directive specifies the Python method to invoke. With
this directive, you can call only specific methods from your Python code.
If the directive is not specified, the default method write_data is invoked.

Examples

Example 111. Forwarding events with om_python

This example shows an alerter implemented as an output module instance in
Python. First, any event with a normalized severity less than of 4/ERROR is
dropped; see the Exec directive (xm_syslog and most
other modules set a normalized
$SeverityValue field). Then the Python
function generates a custom email and sends it via SMTP.

nxlog.conf

<Output out>
 Module om_python
 PythonCode /opt/nxlog/etc/output.py
 Exec if $SeverityValue < 4 drop();
</Output>

output.py

from email.mime.text import MIMEText
import pprint
import smtplib
import socket

import nxlog

HOSTNAME = socket.gethostname()
FROM_ADDR = 'nxlog@{}'.format(HOSTNAME)
TO_ADDR = 'you@example.com'

def write_data(event):
 nxlog.log_debug('Python alerter received event')

 # Convert field list to dictionary
 all = {}
 for field in event.get_names():
 all.update({field: event.get_field(field)})

 # Create message from event
 pretty_event = pprint.pformat(all)
 msg = 'NXLog on {} received the following alert:\n\n{}'.format(HOSTNAME,
 pretty_event)
 email_msg = MIMEText(msg)
 email_msg['Subject'] = 'Alert from NXLog on {}'.format(HOSTNAME)
 email_msg['From'] = FROM_ADDR
 email_msg['To'] = TO_ADDR

 # Send email message
 nxlog.log_debug('Sending email alert for event')
 s = smtplib.SMTP('localhost')
 s.sendmail(FROM_ADDR, [TO_ADDR], email_msg.as_string())
 s.quit()

Raijin (om_raijin)

This module allows logs to be stored in a Raijin server. It will
connect to the URL specified in the
configuration in either plain HTTP or HTTPS mode. Raijin accepts
HTTP POST requests with multiple JSON records in the request body,
assuming that there is a target database table already created on the
Raijin side. Note that Raijin only suports flat JSON (i.e. a list of
key-value pairs) and does not accept nested data structures such as
arrays and maps. Raijin currently does not support authorization/SSL but
the om_raijin module supports TLS since TLS can be enabled with an
HTTP proxy. For more information, see Raijin website.

	

	
This module requires the xm_json extension module to be loaded
 in order to convert the payload to JSON. If the $raw_event
 field is empty the fields will be automatically converted to JSON.
 If $raw_event contains a valid JSON string it will be sent as-is,
 otherwise a JSON record will be generated in the following structure:
 { "raw_event": "escaped raw_event content" }

Configuration

The om_raijin module accepts the following directives in
addition to the common module directives.
The URL directive is required.

	DBName
	
This mandatory directive specifies the database name to insert
data into.

	DBTable
	
This mandatory directive specifies the database table to insert
data into.

	URL
	
This mandatory directive specifies the URL where the module
should POST the event data. The URL also indicates whether to
operate in plain HTTP or HTTPS mode. If the port number is not
explicitly indicated, it defaults to port 80 for HTTP and port 443 for
HTTPS. The URL should point to the endpoint, otherwise
Raijin will return 400 Bad Request.

	FlushInterval
	
The module will send an INSERT command to the
defined endpoint after this amount of time in seconds, unless
FlushLimit is reached
first. This defaults to 5 seconds.

	FlushLimit
	
When the number of events in the output buffer reaches
the value specified by this directive, the module will send an INSERT
command to the endpoint defined in
URL. This defaults to 500 events. The
FlushInterval directive
may trigger sending the INSERT request before this limit is
reached if the log volume is low to ensure that data is promptly
sent.

	HTTPSAllowUntrusted
	
This boolean directive specifies that the remote
connection should be allowed without certificate verification. If
set to TRUE, the connection will be allowed even if the remote HTTPS
server presents an unknown or self-signed certificate. The default
value is FALSE: the remote HTTPS server must present a trusted
certificate.

	HTTPSCADir
	
This specifies the path to a directory containing
certificate authority (CA) certificates, which will be used to check
the certificate of the remote HTTPS server. The certificate
filenames in this directory must be in the OpenSSL hashed format.
A remote’s self-signed certificate (which is not signed by a CA) can also
be trusted by including a copy of the certificate in this directory.

	HTTPSCAFile
	
This specifies the path of the certificate authority
(CA) certificate, which will be used to check the certificate of the
remote HTTPS server.
To trust a self-signed certificate presented by the remote (which is not
signed by a CA), provide that certificate instead.

	HTTPSCertFile
	
This specifies the path of the certificate file to be
used for the HTTPS handshake.

	HTTPSCertKeyFile
	
This specifies the path of the certificate key file
to be used for the HTTPS handshake.

	HTTPSCRLDir
	
This specifies the path to a directory containing
certificate revocation lists (CRLs), which will be consulted when
checking the certificate of the remote HTTPS server. The certificate
filenames in this directory must be in the OpenSSL hashed format.

	HTTPSCRLFile
	
This specifies the path of the certificate revocation
list (CRL) which will be consulted when checking the certificate of
the remote HTTPS server.

	HTTPSKeyPass
	
With this directive, a password can be supplied for the
certificate key file defined in
HTTPSCertKeyFile. This
directive is not needed for passwordless private keys.

	SNI
	
This optional directive specifies the host name used for Server
Name Indication (SNI) in HTTPS mode.

	SSLCipher
	
This optional directive can be used to set the permitted SSL
cipher list, overriding the default. Use the format described in the
ciphers(1ssl)
man page.

	SSLProtocol
	
This directive can be used to set the allowed SSL/TLS
protocol(s). It takes a comma-separated list of values which can be any of
the following: SSLv2, SSLv3, TLSv1, TLSv1.1, TLSv1.2, and TLSv1.3.
By default, the TLSv1.2 and TLSv1.3 protocols are allowed. Note that the
OpenSSL library shipped by Linux distributions may not support SSLv2 and
SSLv3, and these will not work even if enabled with this directive.

	ProxyAddress
	
This optional directive is used to specify the IP address of the
proxy server in case the module should connect to the Raijin server
through a proxy.

	

	
The om_raijin module supports HTTP proxying only. SOCKS4/SOCKS5 proxying
 is not supported.

	ProxyPort
	
This optional directive is used to specify the port number required
to connect to the proxy server.

	SSLCompression
	
This boolean directive allows you to enable data compression
when sending data over the network. The compression mechanism is based on the
zlib compression library. If the directive is not specified, it defaults to
FALSE (the compression is disabled).

	

	
Some Linux packages (for example, Debian) use the OpenSSL library provided
 by the OS and may not support the zlib compression mechanism. The module will
 emit a warning on startup if the compression support is missing. The generic
 deb/rpm packages are bundled with a zlib-enabled libssl library.

Examples

Example 112. Sending Logs to a Raijin Server

This configuration reads log messages from file and forwards them to
the Raijin server on localhost.

nxlog.conf

<Extension json>
 Module xm_json
</Extension>

<Output raijin>
 Module om_raijin
 URL http://localhost:9200/_bulk
 FlushInterval 2
 FlushLimit 100
</Output>

TLS/SSL (om_ssl)

The om_ssl module uses the OpenSSL library to provide an SSL/TLS
transport. It behaves like the om_tcp module, except that
an SSL handshake is performed at connection time and the data is
received over a secure channel. Log messages transferred over plain
TCP can be eavesdropped or even altered with a man-in-the-middle
attack, while the om_ssl module provides a secure log message
transport.

Configuration

The om_ssl module accepts the following directives in addition to the
common module directives.
The Host directive is required.

	Host
	
The module will connect to this IP address or DNS hostname.

	Port
	
The module will connect to this port number on the remote host.
The default is port 514.

	AllowUntrusted
	
This boolean directive specifies that the connection
should be allowed without certificate verification. If set to TRUE
the connection will be allowed even if the remote server presents an
unknown or self-signed certificate. The default value is FALSE: the
remote socket must present a trusted certificate.

	CADir
	
This specifies the path to a directory containing certificate
authority (CA) certificates, which will be used to check the
certificate of the remote socket. The certificate filenames in this
directory must be in the OpenSSL hashed format.

	CAFile
	
This specifies the path of the certificate authority (CA)
certificate, which will be used to check the certificate of the
remote socket.

	CertFile
	
This specifies the path of the certificate file to be used
for the SSL handshake.

	CertKeyFile
	
This specifies the path of the certificate key file to
be used for the SSL handshake.

	CRLDir
	
This specifies the path to a directory containing certificate
revocation lists (CRLs), which will be consulted when checking the
certificate of the remote socket. The certificate filenames in this
directory must be in the OpenSSL hashed format.

	CRLFile
	
This specifies the path of the certificate revocation list (CRL) which
will be used to check the certificate of the remote socket against.

	KeyPass
	
With this directive, a password can be supplied for the
certificate key file defined in
CertKeyFile. This directive is not
needed for passwordless private keys.

	OutputType
	
See the OutputType directive in the
list of common module directives.

	Reconnect
	
This directive has been deprecated as of version 2.4. The
module will try to reconnect automatically at increasing intervals
on all errors.

Procedures

The following procedures are exported by om_ssl.

	reconnect();
	

Force a reconnection. This can be used from a Schedule block to
periodically reconnect to the server.

Examples

Example 113. Sending Binary Data to Another NXLog Agent

This configuration reads log messages from socket and sends them in
the NXLog binary format to
another NXLog agent.

nxlog.conf

<Input uds>
 Module im_uds
 UDS tmp/socket
</Input>

<Output ssl>
 Module om_ssl
 Host localhost
 Port 23456
 CAFile %CERTDIR%/ca.pem
 CertFile %CERTDIR%/client-cert.pem
 CertKeyFile %CERTDIR%/client-key.pem
 KeyPass secret
 AllowUntrusted TRUE
 OutputType Binary
</Output>

<Route uds_to_ssl>
 Path uds => ssl
</Route>

TCP (om_tcp)

This module initiates a TCP connection to a remote host and transfers
log messages.
Or, in Listen mode, this module accepts
client connections and multiplexes data to all connected clients.
The TCP transfer protocol provides more reliable log
transmission than UDP. If security is a concern, consider using the
om_ssl module instead.

Configuration

The om_tcp module accepts the following directives in addition to the
common module directives.
The Host directive is required.

	Host
	
The module will connect to this IP address or DNS hostname.
Or, if Listen is set to TRUE, the module will
listen for connections on this address.

	Port
	
The module will connect to this port number on the remote
host.
Or, if Listen is set to TRUE, the module will
listen for connections on this port.
The default is port 514.

	Listen
	
If TRUE, this boolean directive specifies that om_tcp should listen
for connections at the local address specified by the
Host directive rather than opening a connection to
the address. The default is FALSE: om_tcp will connect to the specified
address.

	OutputType
	
See the OutputType directive in the
list of common module directives.

	QueueInListenMode
	
If set to TRUE, this boolean directive specifies that
events should be queued if no client is connected. If this module’s buffer
becomes full, the preceding module in the route will be paused or events
will be dropped, depending on whether
FlowControl is enabled. This directive only
applies if Listen is set to TRUE. The default is
FALSE: om_tcp will discard events if no client is connected.

	Reconnect
	
This directive has been deprecated as of version 2.4. The
module will try to reconnect automatically at increasing intervals
on all errors.

Procedures

The following procedures are exported by om_tcp.

	reconnect();
	

Force a reconnection. This can be used from a Schedule block to
periodically reconnect to the server.

Examples

Example 114. Transferring Raw Logs over TCP

With this configuration, NXLog will read log messages from
socket and forward them via TCP.

nxlog.conf

<Input uds>
 Module im_uds
 UDS /dev/log
</Input>

<Output tcp>
 Module om_tcp
 Host 192.168.1.1
 Port 1514
</Output>

<Route uds_to_tcp>
 Path uds => tcp
</Route>

UDP (om_udp)

This module sends log messages as UDP datagrams to the address and
port specified. UDP is the transport protocol of the legacy BSD Syslog
standard as described in RFC 3164, so this module can be particularly
useful to send messages to devices or Syslog daemons which do not
support other transports.

Configuration

The om_udp module accepts the following directives in addition to the
common module directives.
The Host directive is required.

	Host
	
The module will connect to this IP address or DNS hostname.

	Port
	
The module will connect to this port number on the remote
host. The default is port 514.

	LocalPort
	
This optional directive specifies the local port number of
the connection. If this is not specified a random high port number
will be used, which is not always ideal in firewalled network
environments.

	OutputType
	
See the OutputType directive in the
 list of common module directives. If this directive is not specified, the
default is Dgram.

	SockBufSize
	
This optional directive sets the socket buffer size
(SO_SNDBUF) to the value specified. If this is not set, the
operating system default is used.

Examples

Example 115. Sending Raw Syslog over UDP

This configuration reads log messages from socket and forwards them
via UDP.

nxlog.conf

<Input uds>
 Module im_uds
 UDS /dev/log
</Input>

<Output udp>
 Module om_udp
 Host 192.168.1.1
 Port 1514
</Output>

<Route uds_to_udp>
 Path uds => udp
</Route>

Unix Domain Sockets (om_uds)

This module allows log messages to be sent to a Unix domain socket.
Unix systems traditionally have a /dev/log or similar socket used by
the system logger to accept messages. Applications use the syslog(3)
system call to send messages to the system logger. NXLog can
use this module to send log messages to another Syslog daemon via the
socket.

	

	
This module supports SOCK_DGRAM type sockets only. SOCK_STREAM
 type sockets may be supported in the future.

Configuration

The om_uds module accepts the following directives in addition to the
common module directives.

	UDS
	
This specifies the path of the Unix domain socket. The default
is /dev/log.

Examples

Example 116. Using the om_uds Module

This configuration reads log messages from a file, adds BSD Syslog
headers with default fields, and writes the messages to socket.

nxlog.conf

<Extension syslog>
 Module xm_syslog
</Extension>

<Input file>
 Module im_file
 File "/var/log/custom_app.log"
</Input>

<Output uds>
 Module om_uds
 # Defaulting Syslog fields and creating Syslog output
 Exec parse_syslog_bsd(); to_syslog_bsd();
 UDS /dev/log
</Output>

<Route file_to_uds>
 Path file => uds
</Route>

Troubleshooting

When issues arise while configuring or maintaining an NXLog instance, a
stepwise troubleshooting approach (moving from the most likely and simple cases
to the more complex and rare ones) generally yields favorable results.

By default, NXLog generates log messages about its operations.
Inspecting these logs should be the first troubleshooting step when NXLog is not functioning as expected.

Log file

The LogFile global directive in the NXLog configuration file specifies the path to its log file, which must resolve to an existing directory.
The directive defaults to C:\Program Files\nxlog\data\nxlog.log on Windows and /opt/nxlog/var/log/nxlog/nxlog.log on Linux-based systems.
You can disable logging to file by removing the LogFile directive.

	

	
Some Windows applications, including WordPad, cannot open the log file while the NXLog process is running because of exclusive file locking.
Instead, use a viewer that does not lock the file, such as Notepad.

systemd journal

On Linux-based systems, the NXLog service is controlled by systemd.
The systemd journal captures the application standard output and standard error streams, which includes NXLog’s internal logging.
Logs are available in the journal database even if logging to file is not enabled or the log file is deleted.
You can use the journalctl tool to view the logs.
The following are some useful journalctl commands for troubleshooting.

	

	
A user must be a member of the systemd-journal group to access the systemd journal logs.

This command displays all NXLog journal entries since it was installed, ordered by oldest first.

$ journalctl --unit nxlog

Use the -b option to only display log entries from the current boot.

$ journalctl --unit nxlog -b

Use the --since and --until options to narrow down the logging to a specific time-frame.
The time is specified in local time.

$ journalctl --unit nxlog --since "2022-08-04 15:00:00" --until "2022-08-04 15:30:00"

You can redirect the output to file for easier processing.

$ journalctl --unit nxlog --since "2022-08-04 15:00:00" >nxlog.log

Logs are displayed in the syslog-style format by default.
You can change the output format, for example, to JSON, with the -o option.

$ journalctl --unit nxlog --since "2022-08-04 15:00:00" -o json

Actively follow live logs with the -f option.

$ journalctl --unit nxlog -f

Change the logging level

The default logging level is INFO.
You can set the log level to DEBUG to record more detailed information.
However, this level produces a large amount of logging, so we only recommend it for troubleshooting.

To temporarily change the logging level for a running instance:

	
On Linux, send SIGUSR2:

kill -SIGUSR2 $PID

	
On Windows, send service control command 201:

> sc control nxlog 201

For the change to persist between NXLog restarts, set the LogLevel directive in the configuration to DEBUG and restart NXLog.

	
		
		

		
 Changelog
 nxlog(8)

	

 Subscribe to our newsletter to get the latest updates, news, and products releases.

 © Copyright 2024 NXLog Ltd.

 PRIVACY POLICY
 GENERAL TERMS OF BUSINESS

 	
 PRODUCTS

	NXLOG ENTERPRISE EDITION
	NXLOG COMMUNITY EDITION
	NXLOG ADD-ONS
	NXLOG MANAGER
	RAIJIN DATABASE

 	
 MORE NXLOG

	COMPARE SOLUTIONS
	INDUSTRIES
	INTEGRATIONS
	FIND A RESELLER
	PARTNER PROGRAM

 	
 RESOURCES

	DOCUMENTATION
	WHITE PAPERS
	WEBINARS
	CASE STUDIES
	TUTORIALS
	BLOG
	COMMUNITY FORUM

 	
 ABOUT US

	WHY NXLOG
	CUSTOMERS
	CAREERS
	CONTACT US

 	
 DOWNLOADS

	NXLOG ENTERPRISE EDITION
	NXLOG COMMUNITY EDITION
	NXLOG MANAGER
	NXLOG ADD-ONS
	RAIJIN DATABASE

